導航:首頁 > 創造發明 > 數學方程中的術語是誰發明的

數學方程中的術語是誰發明的

發布時間:2021-11-02 03:22:56

Ⅰ 數學方程式里的元次方等術語是誰創造

是康熙皇帝啊

Ⅱ 常用數學符號是誰發明

大數學家、哲學家、思想家畢達哥拉斯同志來回答你的問題:

數學符號的發明和使用比數字晚,但是數量多得多。現在常用的有200多個,初中數學書里就不下20多種。它們都有一段有趣的經歷。

例如加號曾經有好幾種,現在通用"+"號。

"+"號是由拉丁文"et"("和"的意思)演變而來的。十六世紀,義大利科學家塔塔里亞用義大利文"più"(加的意思)的第一個字母表示加,草為"μ"最後都變成了"+"號。

"-"號是從拉丁文"minus"("減"的意思)演變來的,簡寫m,再省略掉字母,就成了"-"了。

也有人說,賣酒的商人用"-"表示酒桶里的酒賣了多少。以後,當把新酒灌入大桶的時候,就在"-"上加一豎,意思是把原線條勾銷,這樣就成了個"+"號。

到了十五世紀,德國數學家魏德美正式確定:"+"用作加號,"-"用作減號。

乘號曾經用過十幾種,現在通用兩種。一個是"×",最早是英國數學家奧屈特1631年提出的;一個是"· ",最早是英國數學家赫銳奧特首創的。德國數學家萊布尼茨認為:"×"號象拉丁字母"X",加以反對,而贊成用"· "號。他自己還提出用"п"表示相乘。可是這個符號現在應用到集合論中去了。

到了十八世紀,美國數學家歐德萊確定,把"×"作為乘號。他認為"×"是"+"斜起來寫,是另一種表示增加的符號。

"÷"最初作為減號,在歐洲大陸長期流行。直到1631年英國數學家奧屈特用":"表示除或比,另外有人用"-"(除線)表示除。後來瑞士數學家拉哈在他所著的《代數學》里,才根據群眾創造,正式將"÷"作為除號。

平方根號曾經用拉丁文"Radix"(根)的首尾兩個字母合並起來表示,十七世紀初葉,法國數學家笛卡兒在他的《幾何學》中,第一次用"√"表示根號。"r"是由拉丁字線"r"變,"--"是括線。
十六世紀法國數學家維葉特用"="表示兩個量的差別。可是英國牛津大學數學、修辭學教授列考爾德覺得:用兩條平行而又相等的直線來表示兩數相等是最合適不過的了,於是等於符號"="就從1540年開始使用起來。

1591年,法國數學家韋達在菱中大量使用這個符號,才逐漸為人們接受。十七世紀德國萊布尼茨廣泛使用了"="號,他還在幾何學中用"∽"表示相似,用"≌"表示全等。

大於號"〉"和小於號"〈",是1631年英國著名代數學家赫銳奧特創用。至於≯""≮"、"≠"這三個符號的出現,是很晚很晚的事了。大括弧"{ }"和中括弧"[ ]"是代數創始人之一魏治德創造的。
參考資料:http://www..com/s?wd=%BC%D3%BA%C5+%BC%F5%BA%C5+%B7%A2%C3%F7&cl=3

Ⅲ 數學方程式中的元和次是誰創立的

數學方程式中的元和次是中國清朝時期的康熙皇帝創立的。

康熙皇帝是中國歷史上聲名顯赫,又有遠大抱負,聰明好學的一位皇帝。他除了其文治武功之外 ,還十分愛好數學,曾拜比利時的南懷仁等傳教士為師,學習數學 、天文、地理以及拉丁文等,康熙皇帝雖然聰穎過人,但是聽外籍教師講課也有困難,因為南懷仁等人的漢語和滿語水平有限,日常會話勉強對付,但要將嚴謹而高深的科學知識表達出來就顯得力不從心了。而當時課本多是外文,即使中譯本也是半通不通的。這樣,學習中就必然有許多精 力被消耗在語言溝通上,進度不快 。

不過,康熙學習很刻苦,也很有耐心,不懂就請教,直至真正弄懂為止。南懷仁在講方程時,句子冗長,吐音又很不清楚,康熙的腦子常常被搞得暈暈糊糊的,怎樣才能讓老師講得好懂呢?一陣冥思苦想後,一個妙法突然冒出來。他向南懷仁建議 ,將未知數翻譯為「元」,最高次數翻譯為「次」(限整式方程),使方程左右兩邊相等的未知數的值翻譯為「根」(解)⋯⋯南懷仁用筆認真地記了下來 ,隨即用這些新創術語換下自己原先使用的繁瑣詞語 :「求二『元』一『次』方程的『根 』(解 )⋯⋯「如此一來,果然簡單了很多,而且還可以提高教學效率,南懷仁驚疑地盯著康熙,愣怔了一會兒,突然按照西方最親切的禮節一下子將康熙緊緊抱住:「我讀書和教書幾十年,無論是老師還是學生,還從來沒見過一個像您這樣肯動腦筋的人 !」

正因為康熙創造的這幾個數學術語科學而簡潔,十分便於理解和記憶,因此一直延用到今天 。

Ⅳ 方程是誰發明的

方程的發明者是法國數學家韋達。

韋達1540年生於法國的普瓦圖(Poitou),今旺代省的豐特奈 -勒孔特(Fontenay.-le-Comte)。1603年12月13日卒於巴黎。年輕時學習法律並當過律師。後從事政治活動,當過議會的議員。

在對西班牙的戰爭中,曾為政府破譯敵軍的密碼。韋達還致力於數學研究,第一個有意識地和系統地使用字母來表示已知數、未知數及其乘冪,帶來了代數學理論研究的重大進步。韋達討論了方程根的各種有理變換,發現了方程根與系數之間的關系(所以人們把敘述一元二次方程根與系數關系的結論稱為「韋達定理」)。

韋達從事數學研究只是出於愛好,然而他卻完成了代數和三角學方面的巨著。他的《應用於三角形的數學定律》(1579年)是韋達最早的數學專著之一,可能是西歐第一部論述6種三角形函數解平面和球面三角形方法的系統著作。他被稱為現代代數符號之父。

韋達還專門寫了一篇論文"截角術",初步討論了正弦,餘弦,正切弦的一般公式,首次把代數變換應用到三角學中。他考慮含有倍角的方程,具體給出了將COS(nx)表示成COS(x)的函數並給出當n≤11等於任意正整數的倍角表達式了。

(4)數學方程中的術語是誰發明的擴展閱讀:

早在3600年前,古埃及人寫在草紙上的數學問題中,就涉及了方程中含有未知數的等式。

公元825年左右,中亞細亞的數學家阿爾·花拉子米曾寫過一本名叫《對消與還原》的書,重點討論方程的解法。

方程中文一詞出自古代數學專著《九章算術》,其第八卷即名「方程」。「方」意為並列,「程」意為用算籌表示豎式。

卷第八(一)為:今有上禾三秉,中禾二秉,下禾一秉,實三十九斗;上禾二秉,中禾三秉,下禾一秉,實三十四斗;上禾一秉,中禾二秉,下禾三秉,實二十六斗。問上、中、下禾實一秉各幾何?

(現今有上等黍3捆、中等黍2捆、下等黍1捆,打出的黍共有39斗;有上等黍2捆、中等黍3捆、下等黍1捆,打出的黍共有34斗;有上等黍1捆、中等黍2捆、下等黍3捆,打出的黍共有26斗。問1捆上等黍、1捆中等黍、1捆下等黍各能打出多少斗黍?)

白話翻譯:卷第八(一)為:現在有上禾三點,中禾二點,下禾一點,實際上三十九斗;上禾二點,中禾三點,下禾一點,實際上三十四斗;上禾一點,中禾二點,下禾三點,實際上兩個十六斗。向上、中、下禾是一點各是多少?

(現在有上等黍三捆、中等黍二捆、下等黍子捆,打出來的飯共有三十九斗;有上等黍二捆、中等黍三捆、下等黍子捆,打出來的飯共有三十四斗;有上等黍子捆、中等黍二捆、下等黍三捆,打出來的飯共有二十六斗。問1捆上等人黍、一捆中等黍、1把下等人黍各能打響多少斗黃米?)

答曰:上禾一秉,九斗、四分斗之一,中禾一秉,四斗、四分斗之一,下禾一秉,二斗、四分斗之三。

白話翻譯:他回答說:上禾一點,九斗、四分一的一,中禾一點,四斗、四分一的一,下禾一點,二斗、四分之三斗。

方程術曰:置上禾三秉,中禾二秉,下禾一秉,實三十九斗,於右方。中、左禾列如右方。以右行上禾遍乘中行而以直除。又乘其次,亦以直除。然以中行中禾不盡者遍乘左行而以直除。左方下禾不盡者,上為法,下為實。實即下禾之實。

求中禾,以法乘中行下實,而除下禾之實。余如中禾秉數而一,即中禾之實。求上禾亦以法乘右行下實,而除下禾、中禾之實。余如上禾秉數而一,即上禾之實。實皆如法,各得一斗。

白話翻譯:方程方法是:設置上禾三點,中禾二點,下禾一點,實際上三十九斗,在右邊。中、左禾列如右方。以右行上禾遍乘中行而以直任。又乘其次,也可以直接消除。然而以中行中禾不盡的遍乘左行而以直任。左下方禾不盡的,上為法,以下是真實。實立即下禾的事實。

求中禾,因法乘中走下實,而除下禾的事實。我像中禾持數而一,就是中禾的事實。求上禾也因法乘右邊走下實,而除下禾、中禾的事實。我像上禾持數而一,登上禾的事實。實際上都像法,各得一斗。

以上是出自《九章算術》中的三元一次方程組,並展示了用「遍乘直除」來消元以解此方程組。

魏晉時期的大數學家劉徽在公元263年前後為《九章算術》作了大量注釋,介紹了方程組:二物者再程,三物者三程,皆如物數程之。並列為行,故謂之方程。他還創立了比「遍乘直除」更簡便的「互乘相消」法來解方程組。

Ⅳ 數學里的方程是誰發明的

大約2.71828 這里的e是一個數的代表符號,而我們要說的,便是e的故事。這倒叫人有點好奇了,要能說成一本書,這個數應該大有來頭才是,至少應該很有名吧?但是搜索枯腸,大部分人能想到的重要數字,除了眾人皆知的0及1外,大概就只有和圓有關的π了,了不起再加上虛數單位的i=√-1。這個e究竟是何方神聖呢? 在高中數學里,大家都學到過對數(logarithm)的觀念,也用過對數表。教科書里的對數表,是以10為底的,叫做常用對數(common logarithm)。課本里還簡略提到,有一種以無理數e=2.71828……為底數的對數,稱為自然對數(natural logarithm),這個e,正是我們故事的主角。不知這樣子說,是否引起你更大的疑惑呢?在十進位制系統里,用這樣奇怪的數為底,難道會比以10為底更「自然」嗎?更令人好奇的是,長得這麼奇怪的數,會有什麼故事可說呢? 這就要從古早時候說起了。至少在微積分發明之前半個世紀,就有人提到這個數,所以雖然它在微積分里常常出現,卻不是隨著微積分誕生的。那麼是在怎樣的狀況下導致它出現的呢?一個很可能的解釋是,這個數和計算利息有關。 我們都知道復利計息是怎麼回事,就是利息也可以並進本金再生利息。但是本利和的多寡,要看計息周期而定,以一年來說,可以一年只計息一次,也可以每半年計息一次,或者一季一次,一月一次,甚至一天一次;當然計息周期愈短,本利和就會愈高。有人因此而好奇,如果計息周期無限制地縮短,比如說每分鍾計息一次,甚至每秒,或者每一瞬間(理論上來說),會發生什麼狀況?本利和會無限制地加大嗎?答案是不會,它的值會穩定下來,趨近於一極限值,而e這個數就現身在該極限值當中(當然那時候還沒給這個數取名字叫e)。所以用現在的數學語言來說,e可以定義成一個極限值,但是在那時候,根本還沒有極限的觀念,因此e的值應該是觀察出來的,而不是用嚴謹的證明得到的。 包羅萬象的e 讀者恐怕已經在想,光是計算利息,應該不至於能講一整本書吧?當然不,利息只是極小的一部分。令人驚訝的是,這個與計算復利關系密切的數,居然和數學領域不同分支中的許多問題都有關聯。在討論e的源起時,除了復利計算以外,事實上還有許多其他的可能。問題雖然都不一樣,答案卻都殊途同歸地指向e這個數。比如其中一個有名的問題,就是求雙曲線y=1/x底下的面積。雙曲線和計算復利會有什麼關系,不管橫看、豎看、坐著想、躺著想,都想不出一個所以然對不對?可是這個面積算出來,卻和e有很密切的關聯。我才舉了一個例子而已,這本書里提到得更多。 如果整本書光是在講數學,還說成是說故事,就未免太不好意思了。事實上是,作者在探討數學的同時,穿插了許多有趣的相關故事。比如說你知道第一個對數表是誰發明的嗎?是納皮爾(John Napier)。沒有聽說過?這很正常,我也是讀到這本書才認識他的。重要的是要下一個問題。你知道納皮爾花了多少時間來建構整個對數表嗎?請注意這是發生在十六世紀末、十七世紀初的事情,別說電腦和計算機了,根本是什麼計算工具也沒有,所有的計算,只能利用紙筆一項一項慢慢地算,而又還不能利用對數來化乘除為加減,好簡化計算。因此納皮爾整整花了二十年的時間建立他的對數表,簡直是匪夷所思吧!試著想像一下二十年之間,每天都在重復做同類型的繁瑣計算,這種乏味的日子絕不是一般人能忍受的。但納皮爾熬過來了,而他的辛苦也得到了報償——對數受到了熱切的歡迎,許多歐洲甚至中國的科學家都迅速採用,連納皮爾也得到了來自世界各地的贊譽。最早使用對數的人當中,包括了大名鼎鼎的天文學家刻卜勒,他利用對數,簡化了行星軌道的繁復計算。 在《毛起來說e》中,還有許多我們在一般數學課本里讀不到的有趣事實。比如第一本微積分教科書是誰寫的呢?(假如你曾受微積分課程之苦,也會想知道誰是「始作俑者」吧?」)是羅必達先生。對啦,就是羅必達法則(L'Hospital's Rule)的那位羅必達。但是羅必達法則反倒是約翰.伯努利先發現的。不過這無關乎剽竊的問題,他們之間是有協議的。 說到伯努利可就有故事說了,這個家族實在不得了,別的家族出一位天才就可以偷笑了,而他們家族的天才是用「量產」形容。伯努利們前前後後在數學領域中活躍了一百年,他們的諸多成就(不僅止於數學領域),就算隨便列一列,也有一本書這麼厚。不過這個家族另外擅長的一件事就不太敢恭維了,那就是吵架。自家人吵不夠,也跟外面的人吵(可說是「表裡如一」)。連爸爸與兒子合得一個大獎,爸爸還非常不滿意,覺得應該由自己獨得,居然氣得把兒子趕出家門;和現代的許多「孝子」們比起來,這位爸爸真該感到慚愧。 e的「影響力」其實還不限於數學領域。大自然中太陽花的種子排列、鸚鵡螺殼上的花紋都呈現螺線的形狀,而螺線的方程式,是要用e來定義的。建構音階也要用到e,而如果把一條鏈子兩端固定,鬆鬆垂下,它呈現的形狀若用數學式子表示的話,也需要用到e。這些與計算利率或者雙曲線面積八竿子打不著的問題,居然統統和e有關,豈不奇妙? 數學其實沒那麼難! 我們每個人的成長過程中都讀過不少數學,但是在很多人心目中,數學似乎是門無趣甚至可怕的科目。尤其到了大學的微積分,到處都是定義、定理、公式,令人望之生畏。我們會害怕一個學科的原因之一,是有距離感,那些微積分里的東西,好像不知是從哪兒冒出來的,對它毫無感覺,也覺得和我毫無關系。如果我們知道微積分是怎麼演變、由誰發明的,而發明之時還發生了些什麼事(微積分是誰發明的這件事,爭論了許多年,對數學發展產生重大的影響),發明者又是什麼樣的人等等,這種距離感就應該會減少甚至消失,微積分就不再是「陌生人」了。

Ⅵ 方程是誰發明的

方程是法國數學家韋達首創 。十六世紀,隨著各種數學符號的出現,法國數學家韋達創立內了較系統的表容示未知量和已知量的符號以後,「含有未知數的等式」 ,這一專門概念便出現了。方程史話:一、大約3600年前古埃及人寫在紙草上的數學問題中,就涉及了方程中含有未知數的等式。二、公元825年左右中亞細亞的數學家阿爾-花拉子米曾寫過一本名叫《對消與還原》的書,重點討論方程的解法。三、宋元時期中國數學家創立了「天元術」,用「天元」表示未知數進而建立方程。這種方法的代表作是數學家李冶寫的《測圓海鏡》(1248),書中所說的「立天元一」相當於「設未知數x。」所以在簡稱方程時,將未知數稱為「元」,如一個未知數的方程叫「一元方程」。而兩個以上的未知數,在古代又稱為「天元」、「地元」、「人元」。《九章算術·方程》白尚恕注釋:「『方』即方形,『程』即表達相課的意思,或者是表達式。於某一問題中,如有含若干個相關的數據,將這些相關的數據並肩排列成方形,則稱為『方程』。

Ⅶ 數學方程中的元次是誰創造的

康熙皇帝。康熙是我國歷史上數學水平最高的一位帝王,他天資聰慧,十分熱愛數學,14歲起跟著從比利時來華的傳教士南懷仁學習數學,是康熙首創「元」、「次」、「根」等方程術語的漢譯名。

比利時傳教士南懷仁在給康熙講解方程時,由於他漢語、滿語水平都很有限,有些術語講不清楚,解釋很久還是不得要領,康熙就建議:將未知數翻譯為「元」,最高次數翻譯為「次」,使方程左右兩邊相等的未知數的值翻譯為「根」或「解」。

南懷仁驚疑地盯著康熙,愣了一會兒,突然按照西方最親切的禮節一下子將康熙緊緊抱住,激動地說:「我讀書和教書幾十年,無論是老師還是學生,還從來沒見過一個像您這樣肯動腦筋的人!」康熙創造的這幾個方程術語,馭繁為簡,准確科學,非常便於理解和記憶。

(7)數學方程中的術語是誰發明的擴展閱讀

南懷仁簡介

南懷仁(Ferdinand Verbiest,1623年10月9日—1688年1月28日,享年66歲),字敦伯,又字勛卿,西屬尼德蘭皮特姆(今比利時布魯塞爾附近)人,耶穌會傳教士,清代天文學家、科學家,1623年10月9日出生,1641年9月29日入耶穌會,1658年來華,是清初最有影響的來華傳教士之一,為近代西方科學知識在中國的傳播做出了重要貢獻。

他是康熙皇帝的科學啟蒙老師,精通天文歷法、擅長鑄炮,是當時國家天文台(欽天監)業務上的最高負責人,官至工部侍郎,正二品。1688年1月28日南懷仁在北京逝世,享年66歲,卒謚勤敏。著有《康熙永年歷法》、《坤輿圖說》、《西方要記》等。

Ⅷ 數學方程中:元.次等術語,是誰創業造的

選康熙創造的

Ⅸ 一元一次方程中的「元」產生於什麼年代是哪位數學家發明的原來的意思是什麼

一元一次方程中的「元」產生的年代沒有明確的記錄,據說是康熙皇帝在學習西方數學時專提出的,因屬當時沒有可以代替「未知數」的代詞,因此採用「元」為方程的未知數。

公元820年左右,數學家花拉子米在《對消與還原》一書中提出了「合並同類項」、「移項」的一元一次方程思想。16世紀,數學家韋達創立符號代數之後,提出了方程的移項與同除命題。1859年,數學家李善蘭正式將這類等式譯為一元一次方程。

(9)數學方程中的術語是誰發明的擴展閱讀:

一元一次方程可以解決絕大多數的工程問題、行程問題、分配問題、盈虧問題、積分表問題、電話計費問題、數字問題。

如果僅使用算術,部分問題解決起來可能異常復雜,難以理解。而一元一次方程模型的建立,將能從實際問題中尋找等量關系,抽象成一元一次方程可解決的數學問題。

閱讀全文

與數學方程中的術語是誰發明的相關的資料

熱點內容
專利代理人個人總結 瀏覽:312
工商局黨建工作述職報告 瀏覽:685
創造力閱讀理解答案 瀏覽:866
金華質監局和工商局合並 瀏覽:334
衛生院公共衛生服務考核結果 瀏覽:693
專利權的內容有哪幾項 瀏覽:750
學校矛盾糾紛排查表 瀏覽:294
內地音樂版權 瀏覽:208
公共衛生服務今後工作計劃 瀏覽:457
公共衛生服務考核小組 瀏覽:872
疫情里的科研成果 瀏覽:519
工商局愛國衛生月及健康教育宣傳月活動總結 瀏覽:942
三興商標織造有限公司 瀏覽:657
加強和改進公共服務實施方案 瀏覽:991
迷你世界創造熔岩號角 瀏覽:479
愛奇藝激活碼有效期 瀏覽:507
醫療糾紛官司南方周末 瀏覽:855
公共服務類大樓的物業管理方案 瀏覽:284
電影版權買賣合同範本 瀏覽:167
口罩在商標注冊屬於哪個類目 瀏覽:256