A. 歷史上二次根式是怎麼來的,由誰提出的
根號的由來
英語:radical sign 現在,我們都習以為常地使用根號(如√ 等),並感到它使用起來既簡明又方便。 那麼,根號是怎樣產生和演變成現在這種樣子的呢? 古時候,埃及人用記號「┌」表示平方根。印度人在開平方時,在被開方數的前面寫上ka。阿拉伯人用 表示 。1840年前後,德國人用一個點「.」來表示平方根,兩點「..」表示4次方根,三個點「...」表示立方根,比如,.3、..3、...3就分別表示3的平方根、4次方根、立方根。到十六世紀初,可能是書寫快的緣故,小點上帶了一條細長的尾巴,變成「 」。1525年,路多爾夫在他的代數著作中,首先採用了根號,比如他寫 4是2, 9是3,並用 8, 8表示 , 。但是這種寫法未得到普遍的認可與採納。 與此同時,有人採用「根」字的拉丁文radix中第一個字母的大寫R來表示開方運算,並且後面跟著拉丁文「平方」一字的第一個字母q,或「立方」的第一個字母c,來表示開的是多少次方。例如,現在的 ,當時有人寫成R.q.4352。現在的 ,用數學家邦別利(1526—1572年)的符號可以寫成R.c.?7p.R.q.14╜,其中「?╜」相當於今天用的括弧,P(plus)相當於今天用的加號(那時候,連加減號「+」「-」還沒有通用)。 直到十七世紀,法國數學家笛卡爾(1596—1650年)第一個使用了現今用的根號「√」。在一本書中,笛卡爾寫道:「如果想求n的平方根,就寫作√n,如果想求n的立方根,則寫作3√n。」 這是出於什麼考慮呢?有時候被開方數的項數較多,為了避免混淆,笛卡爾就用一條橫線把這幾項連起來,前面放上根號√(不過,它比路多爾夫的根號多了一個小鉤)就為現在的根號形式。 現在的立方根符號出現得很晚,一直到十八世紀,才在一書中看到符號3√;√的使用,比如25的立方根用3√25表示。以後,諸如√等等形式的根號漸漸使用開來。 由此可見,一種符號的普遍採用是多麼地艱難,它是人們在悠久的歲月中,經過不斷改良、選擇和淘汰的結果,它是數家們集體智慧的結晶,而不是某一個人憑空臆造出來的,不是從天上掉下來的。 電腦中的根號是√的形式。
B. 誰發明的開根號乘十
我們某門課的老師就是這么打分的 哈哈
C. 誰發明的根號
平方根號曾經用拉丁文"Radix"(根)的首尾兩個字母合並起來表示,十七世紀初葉,法國數學家笛卡兒在他的《幾何學》中,第一次用"√"表示根號。"r"是由拉丁字線"r"變,"--"是括線。
D. 根號是由誰發明的
根號是德國數學家Michael Stifel(1487-1567)所最先使用的,他第一次使用這些符號是在西元1544年。
E. 開根號乘十是誰發明的
老師發明的唄~~~因為100開根號乘以10還是它本身,所以比它小的這些數開根號乘以10絕對會比原數大,這就是老師給學生提分兒的法寶啊~~~望採納O(∩_∩)O
F. 是誰發明了平方根
平方根的概念很早.數學家在研究邊長為單位1的正方形,發現他的對角線長不能用普通的數來表示,於是發明了平方根,即第一個平方根√2.
根號的由來:早在1840年,德國人便開始用一個點來表示平方根.如·3表示3的平方根.
一直到16 世紀的大數學家笛卡爾,才開始採用 (根號√)表示平方根.
G. 根號是誰發明的
根號是怎樣產生和演變成現在這種樣子的呢?
古時候,埃及人用記號「┌」表示平方根.印度人在開平方時,在被開方數的前面寫上ka.阿拉伯人用 表示 .1840年前後,德國人用一個點「.」來表示平方根,兩點「..」表示4次方根,三個點「...」表示立方根,比如,.3、..3、...3就分別表示3的平方根、4次方根、立方根.到十六世紀初,可能是書寫快的緣故,小點上帶了一條細長的尾巴,變成「 √—」.1525年,路多爾夫在他的代數著作中,首先採用了根號,比如他寫√4是2,√9是3,並用√8,√8表示,但是這種寫法未得到普遍的認可與採納.與此同時,有人採用「根」字的拉丁文radix中第一個字母的大寫R來表示開方運算,並且後面跟著拉丁文「平方」一字的第一個字母q,或「立方」的第一個字母c,來表示開的是多少次方.例如,現在的 ,當時有人寫成R.q.4352.現在的 ,用數學家邦別利(1526—1572年)的符號可以寫成R.c.7p.R.q.14╜,其中「?╜」相當於今天用的括弧,P(plus)相當於今天用的加號(那時候,連加減號「+」「-」還沒有通用).直到十七世紀,法國數學家笛卡爾(1596—1650年)第一個使用了現今用的根號「√」.在一本書中,笛卡爾寫道:「如果想求n的平方根,就寫作√n,如果想求n的立方根,則寫作3√n(3上標).」 這是出於什麼考慮呢?有時候被開方數的項數較多,為了避免混淆,笛卡爾就用一條橫線把這幾項連起來,前面放上根號√(不過,它比路多爾夫的根號多了一個小鉤)就為現在的根號形式.現在的立方根符號出現得很晚,一直到十八世紀,才在一書中看到符號3√(3上標)的使用,比如25的立方根用3√25(3上標)表示.以後,諸如√等等形式的根號漸漸使用開來.由此可見,一種符號的普遍採用是多麼地艱難,它是人們在悠久的歲月中,經過不斷改良、選擇和淘汰的結果,它是數家們集體智慧的結晶,而不是某一個人憑空臆造出來的,也絕不是從天上掉下來的.電腦中的根號是√的樣式.可以按AIT,同時按順序按41420就是了.
H. 根號2是誰發現的
可以說是畢達哥拉斯學派的希帕索斯,他發現了這第一個無理數。為此還付出了生命的代價。
第一個被發現的無理數 :
畢達哥拉斯學派的一個名叫希帕索斯的學生,在研究1和2的比例中項時(若1:X=X:2,那麼X叫1和2的比例中項),怎麼也想不出這個比例中項值。後來,他畫一邊長為1的正方形,設對角線為X,於是。他想,X代表對角線長,而,那麼X必定是確定的數。但它是整數還是分數呢?顯然,2是1和4之間的數,因而X應是1和2之間的數,因而不是整數。那麼X會不會是分數呢?畢達哥拉斯學派用歸謬法證明了,這個數不是有理數,它就是無理數 。無理數的發現,對以整數為基礎的畢氏哲學,是一次致命的打擊,以至於有一段時間,他們費了很大的精力,將此事保密,不準外傳,並且將希帕索斯本人也扔到大海中淹死了。但是,人們很快發現了等更多的無理數,隨著時間的推移,無理數的存在已成為人所共知的事實。