① 是誰創造了地球
宇宙大爆炸創造了地球,地球在浩瀚的宇宙中就像當時爆炸產生的一個碎片。
目前內科學界發現了紅衣現象,發現宇宙容中光並不是沿直線傳播,而是略微產生了一點弧度,所以假設並初步證實了宇宙大爆炸學說。
至於地球上產生的物質,都是由於很多年的衍變,包括大爆炸中產生的核聚變等等,出現的。現在沒有發現規律,也不是誰主宰,而是某種特殊的變化形成的萬物,就像辣椒放在宇宙中經過紫外線的照射發生變異,可以變的又大又甜一樣。
② 地球是如何誕生的
在46億年前,地球起源於原始太陽星雲。經過這46億年的不斷演變,地球逐漸形成了如今的一個藍色星球。它是太陽系八大行星之一,不僅可以自西向東自轉,還要圍繞太陽進行公轉。根據科學記載,地球演化共分為以下三個階段。
一、地球圈層時期地球演化的第一個階段是地球圈層形成時期,時間大概為距今4600-4200Ma(百萬年)。根據科學家的研究,地球來源於原始太陽星雲,它在形成之初是一個由岩漿組成的熾熱的火球。隨著時間的推移,地球表面的溫度不斷下降,固態的地核逐漸演化形成。密度大的物質逐漸向地心移動,密度小的物質逐漸向地表移動,這就形成了一個主要以岩石為主的地球。
親愛的讀者朋友們,你們明白了嗎?
③ 人類的哪些發明為地球帶來了哪些危險
很多,比如汽車帶來了光化學污染
製冷設備帶來了臭氧層空洞
工業廢氣,廢水排放帶來的水污染,空氣污染,酸雨等
④ 哪些科學技術一旦發明成功,將會轟動整個地球
“科學”兩個字從古至今經歷了質的蛻變,又有了量的改變。
人類憑借著現代科學技術將地球變得豐富多彩,科技的發展趨勢已經完全超出了人類的想像,可以說只有想的到,沒有做不到。
不過還有一些科學技術仍在研究中,但是如果發明成功,將會轟動全球。
一、常溫超導體在1911年,荷蘭科學家首次發現汞在-269度是電阻會消失,這是人類第一次發現超導體。超導體具有兩大特性,一是零電阻的特性,二是完全抗磁性。
但是如果實現可控核聚變技術的話,會給人類帶來很大的好處。化石燃料可以給地球提供豐富的能源,但是所有的能源並不都是永生的,如果這種能源消失將會使地球陷入危機,而可控核聚變就是可以解決這個問題的。
一旦可控核聚變技術推廣之後可以幫助人類解決面臨的各種危機,而且可能使人類進入“天堂時代”。
⑤ 地球是誰發明的
其實地球來是宇宙中爆炸的一源塊碎片 他之前不過是一個大集體的一小部分而已 只不過他對我們來說是那麼的巨大 可以說宇宙還是回發生再一次的大爆炸 是為了下一次所產生的人類 宇宙會一直的爆炸下去 也會一直有新的人類產生 我們現在只不過是生活在其中的一次爆炸罷了
⑥ 地球怎麼形成的
地球形成開始,溫度較低,並無分層結構,只是由於隕石物質的轟擊,放射性衰變致熱和原始地球的重力收縮,才使地球溫度逐漸增加。隨著溫度的升高,地球內部物質也就具有越來越大的可塑性,且有局部熔融現象。這時,在重力作用下物質分異開始,地球外部較重的物質逐漸下沉,地球內部較輕的物質逐漸上升,一些重的元素(如液態鐵)沉到地球中心,形成一個密度較大的地核(地震波的觀測表明,地球外核是液態的)。物質的對流伴隨著大規模的化學分離,最後地球就逐漸形成現今的地殼、地幔和地核等層次。
在地球演化早期,原始大氣逃逸殆盡。伴隨著物質的重新組合和分化,原先在地球內部的各種氣體通過火山噴發等作用上升到地表成為第二代大氣,後來,因綠色植物的光合作用,進一步發展成為現代大氣。另一方面,地球內部溫度升高,使內部結晶水汽化。隨著地表溫度逐漸下降,氣態水經過凝結、降雨落到地面形成水圈。約在三、四十億年前,地球上開始出現單細胞生命,然後逐步進化為各種各樣的生物,直到人類這樣的高級生物,構成了一個生物圈。
⑦ 世界重大發明一覽表,要20個
一、古代發明
1、指南針
指南針是用以判別方位的一種簡單儀器。前身是司南。主要組成部分是一根裝在軸上可以自由轉動的磁針(俗稱吸鐵石)。磁針在地磁場作用下能保持在磁子午線的切線方向上。磁針的北極指向地理的南極,利用這一性能可以辨別方向。
常用於航海、大地測量、旅行及軍事等方面。指南針的N指北方,E指東方,W指西方,S指南方。 指南針是利用磁鐵在地球磁場中的南北指極性而製成的一種指向儀器,有多種形體。早在戰國時期,中國先民已用天然磁石製成指示方向的司南之勺。
三國魏時,馬鈞利用磁鐵和差速齒輪製造了能指示方向的機械裝置——指南車。宋代科學家沈括在其《夢溪筆談》中記載了製作指向用的磁針的方法。後來,又發展成磁針和方位盤聯成一體的羅盤。至晚在北宋後期,指南針已用於航海;南宋時,已使用針盤導展和經濟文化的交流,起了極大作用。
2、造紙術
大約在3500多年前的商朝,中國就有了刻在龜甲和獸骨上的文字,稱為甲骨文到了春秋時,用竹片和木片替代龜甲和獸骨,稱為竹簡和木牘。甲骨和簡牘都很笨重,戰國時思想家惠施喜歡讀書,每次外出遊學身後都跟著五輛裝滿竹簡的大車,所以有學富五車的典故。
西漢時在宮廷貴族中又用縑帛或綿紙寫字。縑是細絹、帛是絲織品的總稱吏一方縑帛上寫字時,便於書寫,不但比簡牘寫得多,而且還可以在上面作畫,但是價格昂貴,只能供少數王宮貴族使用。公元前2世紀西漢初期已經有了紙 ,而蔡倫只是改造了紙。
造紙術在7世紀經朝鮮傳到日本。8世紀中葉傳到阿拉伯聯合大公國。
12世紀,歐洲才仿效中國的方法開始設廠造東漢和帝元興元年(公元105年),蔡倫在總結前人製造絲織晶的經驗的基礎上,用樹皮、破漁網、破布、麻頭等作為原料,製造成了適合書寫的植物纖維紙,改進了造紙術,才使紙成為人們普遍使用的書寫材料。
3、活字印刷術
它開始於隋朝的雕版印刷,經宋仁宗時的畢升發展、完善,產生了活字印刷,並由蒙古人傳至了歐洲,所以後人稱畢升為印刷術的始祖。中國的印刷術是人類近代文明的先導,為知識的廣泛傳播、交流創造了條件。
雕版印刷是用刀在一塊塊木板上雕刻成凸出來的反寫字,然後再上墨,印到紙上。每印一種新書,木板就得從頭雕起,速度很慢。如果刻版出了差錯,又要重新刻起,勞作之辛苦,可想而知。
唐咸通九年(868)印製的《金剛經》 ,是世界上現存最早的有刻印時間的印刷品。 宋仁宗慶歷年間,平民畢升在雕版印刷業已普及的基礎上,發明了活字印刷術。它是用膠泥刻字,每字一印,燒後製成字印。將一顆顆字印排列、鑲嵌於鐵板之上,經燒烤、壓平等工藝製成印版後,便可印刷。
4、火葯
火葯作為人類掌握的第一類爆炸物,起源於中國古代的煉丹術。古代煉丹家們利用早在漢代就已掌握的金石葯物硝、硫,經過長期的煉丹實踐,至遲在唐憲宗元和三年(808)以前便已發明了火葯 ,並在五代末北宋初用以造出縱火用的火葯兵器。
經宋、元、明各代,火箭、火毬(火聤)、火銃等各種火器已達到成熱的程度。火葯的發明對世界科技的發展曾起重大作用,現代黑火葯就是由中國古代火葯發展而來的。
二、現代發明
1、無線電
20世紀初期,幾乎沒有人能夠想像一種電磁波可以在沒有任何金屬線或電纜作導體的情況下穿行任何有意義的距離。那麼無線電信號怎麼可能沿著地球的表面行進呢當然它可以沿著一直線射離地平線。
但是古格里爾莫·馬可尼認為,如果提供一些條件的話,無線電波是可以沿著地球表面行進的。1895年,在他的出生地義大利,他發射了一個無線電信號,穿行了1?5英里;6年後,即1901年12月12日,年僅27歲的馬可尼創造了奇跡,他將無線電天線牢牢地系在高飛的風箏上,發射了一個摩爾斯電碼「S」。
它穿行了約2000英里,橫跨了大西洋。這個信號從英國康沃爾郡的波爾德胡鎮發出,在不到1秒鍾的時間內就到達了接收地紐芬蘭的聖約翰,馬可尼聽到了三聲微弱的滴答聲。這是通訊事業宣告誕生的聲音,是電子時代到來的第一道沖擊波。
2、飛機
1903年12月17日,在太陽下山以前,奧維爾·萊特和威爾布·萊特已經能使他們用木頭、電線和布料製成的飛機飛行59秒鍾了。但卻很少有報社願意對這件事作出評論,因為人類飛上天空成為當代的代達羅斯和伊卡洛斯的念頭,被大多數頭腦清醒的人認為是荒誕可笑的。
可是一旦成功了,這項事業的發展就是極為迅猛的。事實上,僅僅在15年後,所有現代飛機的各種部件即使沒有全都製造出來,那麼至少關於它們的想法已經誕生了。
3、塑料
在得知塑料的發明之後,全世界最開心的莫過於大象了。幾百年來,從小刀的把手到檯球,一切都以象牙為標准原料。19世紀80年代,象牙供應的逐步減少與檯球運動的興起就曾引發了一場危機。
美國最大的檯球生產商費蘭與考蘭德公司迫不及待地懸賞價值1萬美元的黃金——這是一筆很可觀的獎賞——招募任何能夠提供代替象牙的合成品的「發明天才」。
一直到1907年,利奧·貝克蘭,一位曾因發明了用於拍攝快速運動照片的相紙而獲豐厚利潤的比利時籍發明家,無意中發明了苯酚和甲醛的化合物。
這種首創的純合成塑料——酚醛塑料,具有防熱、防電和防腐蝕的功能。它不僅使檯球游戲獲益,塑料的一大好處在於其用途的多面性,從電話機到馬桶,從煙灰缸到飛機零件,一切東西都用得上塑料。
到1968年,年輕的畢業生若要在一個有前途而又會成功的行業里找一份工作,就一定要聽從一個詞——塑料。
4、電視機
電視機的發明者是英國的電子工程師約翰·貝爾德,1923年他為自己發明的能產生8線圖像的裝置申請了專利。1930年底賣出了第一台電視機。1932年,英國廣播公司播出了世界上第一個規范的電視節目。從此,人類開始步入了電視時代。今天,人們利用衛星等途徑,將電視信號傳播到地球的每一個角落。
5、青黴素
人們稱青黴素是本世紀最有貢獻的葯品,它的發明者是英國細菌學家亞歷山大·弗萊明。1928年,這位發明家在一次細菌培養實驗中偶然地發現有一種後來被稱為青黴素的黴菌正吞噬他在培養皿中培養的細菌。
根據弗萊明研究的成果,英國牛津大學的研究者們經過十年的努力,終於找到了提煉這種黴菌的辦法,並投入醫學治療試驗。1943年,為了醫治在二戰中負傷的戰士,盟軍開始將青黴素投入工業生產。在半個多世紀中,青黴素救活了無數人的生命,並促使人們開始重視抗生素家族的研究開發。
6、核武器
原子時代開始於1942年。為了打敗軸心國法西斯,美國最高當局決定啟動旨在研製原子武器的「曼哈頓工程」。1945年的7月16日,一團蘑菇雲從位於美國新墨西哥州的洛斯阿拉莫斯原子能研究中心騰空而起,世界上第一顆原子彈爆炸成功。
當年的8月6日和9日,美國先後將兩顆取名為「胖子」和「小男孩」的原子彈投向日本的廣島和長崎。日本天皇隨後宣布無條件投降,原子彈似乎為贏得二戰的勝利立了大功,但是人類從此便生活在可怕的原子武器的陰影中。
7、計算機
計算機是人類社會進入信息時代的基礎,但它是因戰爭而誕生的。1943年,為破譯德國的密碼,英國數學家阿蘭·圖靈設計了第一台名為「巨人」電動機械式計算機,雖然這僅僅是一台用於解碼的假想計算機,但卻開創了計算機技術發展的先河,從此計算機技術的發展日新月異。
1947年,晶體管計算機問世;1959年,集成電路計算機誕生;1970年,大規模集成電路計算機產生;從80年代開始,新一代微型計算機異軍突起。在此基礎上,人類迎來了網路新時代。
8、DNA
1953年2月28日,英國著名遺傳學家弗朗西斯·克里克宣布他「發現了生命的秘密」。克里克和他美國的同行詹姆斯·沃森多年來一直致力於生命科學的研究,終於從細胞核中發現了決定生命遺傳的脫氧核糖核酸雙螺旋分子結構,破譯了人類、植物和動物的遺傳密碼。
這個發現初步揭示了生命的秘密,推進對各種疾病的研究和醫治,也促進了人類對改善食物結構的研究。在下世紀的前20年,人類就可能通過採用基因治療的辦法消除遺傳缺陷,進而攻克癌症、心臟病、血友病、糖尿病以及其它致命的機能失調症。
人類對DNA分子結構的研究成果,無疑是對人類研究生命、治療疾病具有極大的作用,但是也使人們面臨著因此而造成的道德危機,比如克隆技術的發展,就給人類自己出了個難題。
9、避孕葯
1954年,美國醫師格雷戈里·平卡斯發明了避孕葯,它是由兩種抑制女性排卵的激素組成的混合物。避孕葯之所以被列為二十世紀最偉大的科學成就之一,原因就在於它把婦女從被動的生育中解放出來從此婦女們可以自主地控制生育,按照自己的意願決定是否要小孩,根據自己的情況決定何時懷孕。
更重要的是,它打破了禁錮婦女性自由的枷鎖,使她們有權走出家庭參加社會工作,最終擴大婦女們在社會政治、經濟、文化等方面的影響。
10、人造衛星
1957年10月4日,蘇聯為了紀念十月革命勝利40周年,發射了人類歷史上第一顆人造地球衛星,標志著航天時代的開始。1961年4月2日,蘇聯宇航員加加林乘飛船進入太空,成為第一個進入太空的人。1969年7月20日,美國兩名宇航員乘宇宙飛船登上月球。
衛星可以傳輸電視、廣播節目信號,還可以為航空、海航、天氣預報、科技信息等提供服務,從而把地球大大地「縮小」了。為了進一步探索宇宙的奧秘,人類在太陽系的主要行星上投放了許多探針,並且一個建立國際太空站的宏偉計劃也在醞釀之中。
11、器官移植
1967年,南非外科醫師克里斯蒂安.巴納德成功地進行了首次心臟移植手術。此後,隨著醫葯和醫療器械越來越先進,醫學家們逐漸解決了移植器官感染等難題,成功地進行了手肢、肝臟、皮膚、視網膜甚至睾丸的移植手術。
醫學界認為,器官移植的下一個前沿技術就是腦細胞移植,來根治諸如老年痴呆症和帕金森氏症等醫學頑症。下世紀,醫學家們將致力於攻克異種器官移植難題,將其它動物的器官移植到人體中。
12、試管嬰兒
英國姑娘路易斯·布朗是世界上第一個試管嬰兒,33歲。1978年,她的母親的卵子和她父親的精子在試管中交配成功,孕育了她。此後,體外孕技術不斷發展完善,1984年,胚胎冷凍技術試驗成功;1990年,胚胎移植技術試驗成功。
試管嬰兒的培育成功,給了那些不育夫婦很大的希望,但是這也引起了人們對一個道德問題的憂慮,比如說,一個婦女在50多歲甚至60歲時通過體外孕技術生一個孩子,有可能在孩子還未成年時,老人就會去世,那麼誰來撫養這個孤兒呢
13、留聲機
1877年,愛迪生發現電話傳話器里的膜板隨著說話聲會引起振動的現象,便拿短針作了試驗,從中得到很大發。說話的快慢高低能使短針產生相應的不同顫動。那麼,反過來,這種顫動也一定能發出原先的說話聲音,於是他開始研究聲音重發的問題。
8月15日,愛迪生讓助手按圖樣制出一台由大圓筒、曲柄、受話機和膜板組成的「怪機器」,製成之後,讓針的一頭輕擦著錫箔轉動,另一頭和受話機連接,然後愛迪生搖動曲柄,對著受話機唱歌,之後把針又放回原處,再搖動曲柄,接著機器就回放出愛迪生的聲音。
12月,愛迪生公開展示這台「錫箔筒式留聲機」,轟動了全世界。
14、電燈
與人們通常的認識恰恰相反,最初電燈的發明者不是愛迪生,愛迪生是改進了電燈。
早在1801年,英國一位名叫漢弗里·戴維的化學家就在實驗室中用鉑絲通電發光;1810年,他又發明了用兩根通電碳棒之間發生的電弧而照明的「電燭」,這算是是電燈的最早雛形。另一位英國電技工程師約瑟夫·斯旺經過近30年的研究,於1878年12月製成了以碳絲通電發光的真空燈泡。
當年有關斯旺的電燈泡的報道給了愛迪生以很大啟發。1879年10月,愛迪生終於成功製成了以碳化纖維作為燈絲的白熾燈泡,稱之為「碳化棉絲白熾燈」,隨後大量投產,並成立公司設立發電站和輸電網等相應基礎設施,很快使電燈在美國被普遍使用。
期間,他不斷改進技術,最終確定以鎢絲作為燈絲,稱之為「鎢絲燈」,並定型使用至今,愛迪生也由此成為公認的電燈發明者。
15、望遠鏡
1608年荷蘭米德爾堡眼鏡師漢斯·李波爾(Hans Lippershey)造出了世界上第一架望遠鏡。一次,兩個小孩在李波爾的商店門前玩弄幾片透鏡,他們通過前後兩塊透鏡看遠處教堂上的風標,兩人興高采烈。
李波爾賽拿起兩片透鏡一看,遠處的風標放大了許多。李波爾賽跑回商店,把兩塊透鏡裝在一個筒子里,經過多次試驗,漢斯·李波爾發明瞭望遠鏡。1608年他為自己製作的望遠鏡申請專利,並遵從當局的要求,造了一個雙筒望遠鏡。據說小鎮好幾十個望遠鏡眼鏡匠都聲稱發明瞭望遠鏡。
與此同時,德國的天文學家開普勒也開始研究望遠鏡,他在《屈光學》里提出了另一種天文望遠鏡,這種望遠鏡由兩個凸透鏡組成,與伽利略的望遠鏡不同,比伽利略望遠鏡視野寬闊。但開普勒沒有製造他所介紹的望遠鏡。
沙伊納於1613年─1617年間首次製作出了這種望遠鏡,他還遵照開普勒的建議製造了有第三個凸透鏡的望遠鏡,把二個凸透鏡做的望遠鏡的倒像變成了正像。沙伊納做了8台望遠鏡,一台一台地觀察太陽,無論哪一台都能看到相同形狀的太陽黑子。
因此,他打消了不少人認為黑子可能是透鏡上的塵埃引起的錯覺,證明了黑子確實是觀察到的真實存在。在觀察太陽時沙伊納裝上特殊遮光玻璃,伽利略則沒有加此保護裝置,結果傷了眼睛,最後幾乎失明。
荷蘭的惠更斯為了減少折射望遠鏡的色差在1665年做了一台筒長近6米的望遠鏡,來探查土星的光環,後來又做了一台將近41米長的望遠鏡。
16、空調
1902年後期,首個現代化,電力推動的空氣調節系統由威利斯·開利(1876年-1950年)發明。其設計與Wolff的設計分別在於並非只控制氣溫,亦控制空氣的濕度以提高紐約布克林一間印刷廠的製作過程質素。
此技術提供了低熱度及濕度的環境,令紙張面積及油墨的排列更准確。其後,開利的技術開始用於在工作間以提升生產效率,開利工程公司亦在1915年成立以應付激增的需求。
在逐漸發展下,空氣調節開始用於提升在家居及汽車的舒適度。住宅空調系統的銷量到1950年代才真正起飛。建於1906年,位於北愛爾蘭貝爾法斯特的皇家維多利亞醫院,在建築工程學上具有特別意義,被稱為世界首座設有空氣調節的大廈。
⑧ 哪些科技發明利用了地球的公轉原理
地球自轉產生的現象有:
1、晝夜更替現象;
2、南北半球的地轉偏向力引起的各種運動旋轉現象;
3、東西部地區的時間差現象.生物作息規律現象.
地球公轉產生的現象有:
1、根據太陽高度的差異,劃分出五帶:北寒、北溫、熱帶、南溫、南寒;
2、根據獲得熱量多少的時間差異,劃分出四季:春、夏、秋、冬;
3、晝夜長短的變化現象;
4、天象位置的變化;生物生長規律現象.
⑨ 為了保護地球 現在發明了
人類為了生存所進行的資源及能源的開發和利用是完全必要的,但是所有開發和利用都應當從整個自然界,尤其是地球環境的生態系統,即所謂生物圈的平衡狀況加以全面 地和科學地考慮,然後再在保護自然環境、維持生態多樣性的基礎上,達到人和自然之間的協調。
當前,不但要加強和擴大那些具有原始性狀,即受人類影響較少的生態系統,通過人為的保護和再建、使其維持原始的自然面貌,保持生態系統內部各要素的平衡,而且要重視人類在認識化學物質毒性問題上所取得的寶貴經驗。對於各種比學物質,從生產到廢棄的整個過程,都要考慮一個防止污染環境的安全措施,更應當尋求無污染的生產方法,製取無毒性的化學產品,顯然,這是給化學工作者提出的一個更高、更難的任務。
我國憲法第二十六條已經明確指出:「國家保護和改善生活環境,防治污染和其它公害,國家組織和鼓勵植樹造林,保護林木。」這樣,在黨和國家的重視和領導下,我們要大力宣傳和普及「環保」知識、為創造一個無污染和公害、生態保持平衡和優美的環境而共同努力。
===================================
怎樣保護地球環境
地球爺爺您好,我們是一位同情並且關心您的一位小學生。我從電視上看了人類的所作所為極為痛心,您一直那麼呵護我們不讓外界有機可乘,但是人們仍然取之無度,用之無節地傷害您。雖然,我不能為您做出很大貢獻,但是我們可以從自身做起,並呼籲同學們一起保護您。請您放心。下面我們就提了幾點保護您的建議,不知可否:
1、不隨地吐痰
2、保護地球上的生物
3、用完水及時關閉水籠頭
4、多種花、草、樹木把您打扮的更漂亮
5、保護臭氧層
6、不隨便丟垃圾
7、垃圾分類
8、回收廢電池
9、盡量不排放烏煙
10、不浪費紙張
⑩ 關於地球的科學發明
第一節 地球的內部圈層
一、地球內部圈層的劃分
(一)劃分依據
限於科學技術水平,人類可以直接觀察到的地下深度十分有限。現在世界上最深的礦井僅4~5km,最深的鑽井不過12.5km,即使是火山噴溢出來的岩漿,最深也只能帶出地下幾十到200km左右的物質。目前對地球內部的了解,主要是藉助於地震波研究的成果。地震發生時,人們會感到地球在劇烈顫動,這是由於地震所激發出的彈性波在地球中傳播的結果,這種彈性波就叫地震波(seismic wave)。地震波主要包括縱波(P波)、橫波(S波)和面波,其中對地球內部構造研究有意義的是縱波和橫波(註:面波只沿地表傳播)。質點的振動方向與地震波傳播方向一致的波稱縱波;質點的振動方向與地震波傳播方向垂直的波稱橫波。地震波從地震的震源激發向四面八方傳播,到達地表的各個地震台站後被地震儀所記錄下來。根據這些記錄,人們可以推斷地震波的傳播路徑、速度變化以及介質的特點,通過對許多台站的記錄進行綜合分析研究,便可以了解地球的內部構造。所以,有人把地震比喻為地球內部的一盞明燈,它發出的地震波「照亮」了地球的內部。
地震波傳播速度的大小與介質的密度和彈性性質有關,其關系可用公式表示為:
式中,vp、vs分別為縱波和橫波速度,ρ為介質密度,K為介質的體變模量(即物體在圍限壓力下能縮小的程度,K值愈大物體愈難縮小),μ為切變模量(即物體在定向力作用下形狀能改變的程度,μ值愈大物體愈難變形。體變模量和切變模量可統稱為彈性模量)。
所以,地震波速的變化就意味著介質的密度和彈性性質發生了變化。縱波的傳播速度高於橫波,在同一介質中縱波速度約為橫波速度的1.73倍。在液體中,由於切變模量μ=0,所以橫波不能通過。
地震波的傳播如同光波的傳播一樣,當遇到不同波速介質的突變界面時,地震波射線就會發生反射和折射,這種界面稱為波速不連續面。假如地球物質完全是均一的,那麼由震源發出的地震波都將以直線和不變的速度前進。但實際分析的結果表明,地震波總是沿著彎曲的路徑傳播並且不同深度的波速不一致,這表明地球內部的物質是不均一的。傳播路線的連續緩慢彎曲表示物質密度和彈性性質是逐漸變化的,傳播速度的跳躍及傳播路線的折射與反射表示物質密度和彈性性質發生了顯著變化。
(二)地球內部圈層的劃分
地震波的傳播速度總體上是隨深度而遞增變化的。但其中出現2個明顯的一級波速不連續界面、1個明顯的低速帶和幾個次一級的波速不連續面。
莫霍洛維奇不連續面(簡稱莫霍面,Moho discontinuity)該不連續面是1909年由前南斯拉夫學者莫霍洛維奇首先發現的。其出現的深度在大陸之下平均為33km,在大洋之下平均為7km。在該界面附近,縱波的速度從7.0km/s左右突然增加到8.1km/s左右;橫波的速度也從4.2km/s突然增至4.4km/s。莫霍面以上的地球表層稱為地殼(crust)。
古登堡不連續面(簡稱古登堡面,Gutenberg discontinuity)該不連續面是1914年由美國地球物理學家古登堡首先發現的,它位於地下2885km的深處。在此不連續面上下,縱波速度由13.64km/s突然降低為7.98km/s,橫波速度由7.23km/s向下突然消失。並且在該不連續面上地震波出現極明顯的反射、折射現象。古登堡面以上到莫霍面之間的地球部分稱為地幔(mantle);古登堡面以下到地心之間的地球部分稱為地核(core)。
低速帶(或低速層,low-velocity zone)低速帶出現的深度一般介於60~250km 之間,接近地幔的頂部。在低速帶內,地震波速度不僅未隨深度而增加,反而比上層減小5%~10%左右。低速帶的上、下沒有明顯的界面,波速的變化是漸變的;同時,低速帶的埋深在橫向上是起伏不平的,厚度在不同地區也有較大變化。橫波的低速帶是全球性普遍發育的,縱波的低速帶在某些地區可以缺失或處於較深部位。低速帶在地球中所構成的圈層被稱為軟流圈(asthenosphere)。軟流圈之上的地球部分被稱為岩石圈(lithosphere)。
因此,地球的內部構造可以以莫霍面和古登堡面劃分為地殼、地幔和地核三個主要圈層。根據次一級界面,還可以把地幔進一步劃分為上地幔和下地幔,把地核進一步劃分為外地核、過渡層及內地核。在上地幔上部存在著一個軟流圈,軟流圈以上的上地幔部分與地殼一起構成岩石圈。地球內部各圈層的劃分、深度及特徵見圖3.2和表3.1。
表3.1 地球內部圈層結構及各圈層的主要地球物理數據
二、地球內部的主要物理性質
地球內部的主要物理性質包括密度、壓力、重力、溫度、磁性及彈塑性等。
(一)密度
根據萬有引力公式可算出地球的質量為5.974×1021t,再利用地球體積可得出地球的平均密度為5.516g/cm3。但從地表岩石實測的平均密度僅為2.7~2.8g/cm3,可以肯定地球內部必定有密度更大的物質。
目前,對地球內部各圈層物質密度大小與分布的計算,主要是依靠地球的平均密度、地震波傳播速度、地球的轉動慣量及萬有引力等方面的數據與公式綜合求解而得出的。計算結果表明,地球內部的密度由表層的2.7~2.8g/cm3向下逐漸增加到地心處的12.51g/cm3,並且在一些不連續面處有明顯的跳躍,其中以古登堡面(核-幔界面)處的跳躍幅度最大,從5.56g/cm3劇增到9.98g/cm3;在莫霍面(殼-幔界面)處密度從2.9g/cm3左右突然增至3.32g/cm3。各圈層物質密度的大小及變化見表3.1。
(二)壓力
地球內部的壓力是指不同深度上單位面積上的壓力,實質上是壓強。在地內深處某點,來自其周圍各個方向的壓力大致相等,其值與該點上方覆蓋的物質的重量成正比。地內的這種壓力又稱為靜壓力或圍壓,按靜壓力平衡公式可表示為ρ=hρhgh(即靜壓力ρ等於某深度h和該深度以上的地球物質平均密度ρh與平均重力加速度gh的乘積)。
因此,地內壓力總是隨深度連續而逐漸地增加的。如果知道了地球內部物質的密度大小與分布,便可求出不同深度的壓力值。例如,地殼的平均密度的2.75g/cm3,那麼深度每增加1km,壓力將增加約27.5MPa(MPa讀兆帕,1MPa=106N/m2)。計算證明,壓力值在莫霍面處約1200MPa、古登堡面處約135200MPa、地心處達361700MPa。地球內部各圈層的壓力大小及變化情況見表3.1。
(三)重力
地球上的任何物體都受著地球的吸引力和因地球自轉而產生的離心力的作用。地球吸引力和離心力的合力就是重力(gravity)。地球的離心力相對吸引力來說是非常微弱的,其最大值不超過引力的1/288,因此重力的方向仍大致指向地心。地球周圍受重力影響的空間稱重力場。重力場的強度用重力加速度來衡量,並簡稱為重力(單位為伽或毫伽:1Gal=1cm/s2=103mGal)。
地球表面各點的重力值因引力與離心力的不同呈現一定的規律性變化。根據萬有引力定律(F=Gm1m2/r2),地球表面的引力與地球半徑的平方成反比,而地球的形狀接近於一個赤道半徑略大、兩極半徑略小的扁球體。因此,地球兩極的重力值最大,並向赤道減小,減小數值可達1.8Gal左右。依照離心力公式(C=mω2r),在角速度相同的情況下,地表各點的離心力與它到地球自轉軸的垂直距離成正比。因此,離心力以赤道最大,可達3.4Gal,並全部用來抵消引力;向兩極離心力逐漸減小為零,所以,在引力與離心力的共同引響下,重力值具有隨緯度增高而增加的規律,赤道處重力值為978.0318Gal,兩極為983.2177Gal,兩極比赤道增加5.1859Gal。
在地球內部,重力因深度而不同。由於地球內部的慣性離心力變得更加微弱,故地球內部的重力可簡單地看成是引力。地球大體上是一個由均質同心球層組成的球體,在這樣的球體內部,影響重力大小的不是地球的總質量,而只是所在深度以下的質量。如質點位於地下2885km深處的核-幔界面上時,對質點具有引力的只是地核,而地殼與地幔對質點的引力因其呈圈層狀而正好相互抵消。根據上述原理,利用地球內部的密度分布規律,便可求出地球內部不同深部的重力值。從地表到地下2885km的核-幔界面,重力值大體上隨深度而增加,但變化不大,在2885km處達到極大值(約1069Gal)。這是因為地殼、地幔的密度低,而地核的密度高,以致質量減小對重力的影響比距離減小的影響要小一些。從2885km 到地心處,由於質量逐漸減小為零,故重力也從極大值迅速減小為零(參見表3.1)。
(四)溫度
深礦井溫度增高、溫泉和火山噴出熾熱的岩漿等等事實,都告訴我們地球內部是熱的。溫度在地球內部的分布狀況稱為地溫場(geotermal field)。
在地殼表層,由於太陽輻射熱的影響,其溫度常有晝夜變化、季節變化和多年周期變化,這一層稱為外熱層。外熱層受地表溫差變化的影響由表部向下逐漸減弱,外熱層的平均深度約15m,最多不過幾十米。在外熱層的下界處,溫度常年保持不變,等於或略高於年平均氣溫,這一深度帶稱為常溫層。在常溫層以下,由於受地球內部熱源的影響,溫度開始隨深度逐漸增高。通常把地表常溫層以下每向下加深100m所升高的溫度稱為地熱增溫率或地溫梯度(geothermal gradient)(溫度每增加1℃所增加的深度則稱為地熱增溫級)。世界上不同地區地溫梯度並不相同,如我國華北平原約為1~2℃,大慶油田可達5℃。據實測,地球表層的平均地溫梯度約為3℃;海底的平均地溫梯度為4~8℃,大陸為0.9~5℃,海底的地溫梯度明顯高於大陸。
地溫梯度是據地殼淺部實測所得的平均值,一般只適合於用來大致推算地球淺層(地殼以內)的地溫分布規律,並不適用於整個地球內部。如果按平均100m增溫3℃計算,至地殼底部地溫將超過900℃,到地心將高達200000℃的驚人數值,在這樣的溫度條件下,地球內部除了地殼以外當絕大部分處於熔融甚至氣體狀態,這與地球內部絕大部分可以通過地震波橫波(即主要為固態)的觀測事實不符。實際上,地溫梯度是隨深度增加逐漸降低的。對於地球深部的溫度分布,目前主要是根據地震波的傳播速度與介質熔點溫度的關系式推導得出的。根據目前最新的推算資料,在莫霍面處的地溫大約為400~1000℃,在岩石圈底部大約為1100℃,在上、下地幔界面附近(約650km深處)大約為1900℃,在古登堡面(核幔界面)附近大約為3700℃,地心處的溫度大約為4300~4500℃(見表3.1)。由於熱具有從高溫向低溫傳播的性質,所以地球內部的高溫熱能總是以對流、傳導和輻射等方式向地表傳播並散失到外部空間,通常把單位時間內通過地表單位面積的熱量稱為地熱流密度(geothermal heat flow)。目前全球實測的平均地熱流值為1.47×41.686mW/m2,大陸地表熱流的平均值(1.46×41.686mW/m2)與海底的平均值(1.47×41.686mW/m2)基本相等。地表的不同地區地熱流值並不相同,一般在一些構造活動的地區(如年青山脈、大洋中脊、火山、島弧等)熱流值偏高,而在一些構造穩定的地區熱流值偏低。
地表熱流值或地溫梯度明顯高於平均值或背景值的地區稱為地熱異常區。地熱異常可以用來研究地質構造的特徵,同時對研究礦產(如金礦、石油等)的形成與分布也具有重要作用。地熱也是一種重要的天然資源,尋找地熱田可用於發電、工業、農業、醫療和民用等。
(五)磁場
地球周圍存在著磁場,稱地磁場(geomagnetic field)。地磁場近似於一個放置地心的磁棒所產生的磁偶極子磁場,它有兩個磁極,S極位於地理北極附近,N極位於地理南極附近。兩個磁極與地理兩極位置相近,但並不重合,磁軸與地球自轉軸的夾角約為15°。以地磁極和地磁軸為參考系定出的南北極、赤道及子午線被稱為磁南極、磁北極、磁赤道及磁子午線。1980年實測的磁北極位置為北緯78.2°、西經102.9°(加拿大北部),磁南極位置為南緯65.5°、東經139.4°(南極洲)。長期觀測證實,地磁極圍繞地理極附近進行著緩慢的遷移。
地磁場的磁場強度是一個具有方向(即磁力線的方向)和大小的矢量,為了確定地球上某點的磁場強度,通常採用磁偏角、磁傾角和磁場強度三個地磁要素。
磁偏角是磁場強度矢量的水平投影與正北方向之間的夾角,變即磁子午線與地理子午線之間的夾角。如果磁場強度矢量的指向偏向正北方向以東稱東偏,偏向正北方向以西稱西偏。我國東部地區磁偏角為西偏,甘肅酒泉以西多為東偏。
磁傾角是磁場強度矢量與水平面的交角,通常以磁場強度矢量指向下為正值,指向上則為負值。磁傾角在磁赤道上為0°;由磁赤道到磁北極磁傾角由0°逐漸變為+90°;由磁赤道到磁南極磁傾角由0°逐漸變為-90°。
磁場強度大小是指磁場強度矢量的絕對值。地磁場的強度很弱,平均為50μT(T為特[斯拉]的符號);在磁力線較密的地磁極附近強度最大,為6OμT左右;由磁極向磁赤道強度逐漸減弱;在磁赤道附近最小,
近代對地磁場的研究指出,地磁場由基本磁場、變化磁場和磁異常三個部分組成。
基本磁場佔地磁場的99%以上,是構成地磁場主體的穩定磁場。它決定了地磁場相似於偶極場的特徵,其強度在近地表時較強,遠離地表時則逐漸減弱。這些特徵說明了基本磁場是起源於地球內部。對於基本磁場的起源,過去曾認為地球本身是一個大永久磁鐵,使得它周圍產生磁場。但現代物理證明,當物質的溫度超過其居里溫度點時,鐵磁體本身便失去磁性。鐵磁體的居里溫度是500~700℃,而地球深部的溫度遠遠超過此數值,所以地球內部不可能是一個龐大的磁性體。現今比較流行的地磁場起源假說是自激發電機假說。該假說認為地磁場主要起源於地球內部的外地核圈層。由於外地核可能為液態,並且主要由鐵、鎳組成,因此它可能為一個導電的流體層,這種流體層容易發生差異運動或對流。如果在地核空間原來存在著微樣的磁場時,上述差異運動或對流就會感生出電流產生新的磁場,使原來的弱磁場增強;增強了的磁場使感生電流增強,並導致磁場進一步增強。如此不斷進行,磁場增強到一定程度就穩定下來,於是便形成了現在的基本地磁場。
變化磁場是起源於地球外部並疊加在基本磁場上的各種短期變化磁場。它只佔地磁場的很小部分(<1%)。這種磁場主要是由太陽輻射、太陽帶電粒子流、太陽的黑子活動等因素所引起的。因此,它常包含有日變化、年變化及太陽黑子活動引起的磁暴(即較劇烈的變化)等成分。
磁異常(magnetic anomaly)是地球淺部具有磁性的礦物和岩石所引起的局部磁場它也疊加在基本磁場之上。一個地區或地點的磁異常可以通過將實測地磁場進行變化磁場的校正之後,再減去基本磁場的正常值而求得。如所得值為正值稱正磁異常,為負值稱負磁異常。自然界有些礦物或岩石具有較強的磁性,如磁鐵礦、鉻鐵礦、鈦鐵礦、鎳礦、超基性岩等,它們常常能引起正異常。因此,利用磁異常可以進行找礦勘探和了解地下的地質情況。
(六)彈塑性
地球具有彈性,表現在地球內部能傳播地震波,因為地震波是彈性波。日、月的吸引力能使海水發生漲落即潮汐現象,用精密儀器對地表的觀測發現,地表的固體表面在日、月引力下也有交替的漲落現象,其幅度為 7~15 cm,這種現象稱為固體潮,這也說明固體地球具有彈性。同時,地球也表現出塑性。地球自轉的慣性離心力能使地球赤道半徑加大而成為橢球體,表明地球具有塑性;在野外常觀察到一些岩石可發生強烈的彎曲卻未破碎或斷裂,這也表明固體地球具有塑性。地球的彈、塑性這兩種性質並不矛盾,它們是在不同的條件下所表現出來的。如在作用速度快、持續時間短的力(如地震作用力)的條件下,地球常表現為彈性體;在作用力緩慢且持續時間長(如地球旋轉離心力、構造運動作用力)或在地下深部較高的溫、壓條件下,則可表現出較強的塑性。
三、地球內部各圈層的物質組成及物理狀態
推斷地球內部各圈層物質組成的主要依據有下列幾個方面:
(1)根據各圈層密度和地震波速度與地表岩石或礦物的有關性質對比進行推測。
(2)根據各圈層的壓力、溫度,通過高溫高壓模擬實驗進行推測。
(3)根據來自地下深部的物質進行推斷。火山噴發和構造運動有時能把地下深部(如上地幔)的物質帶到地表,為我們認識深部物質提供了依據。
(4)與隕石研究的結果進行對比。
隕石是來自太陽系空間的天體碎片,就目前獲得的大量隕石看,按成分可分三類:
石隕石(stone meteorite)要由橄欖石、輝石等(鐵、鎂的硅酸鹽)礦物組成,按成分大約相當於地表見到的超基性岩,金屬狀態的鐵、鎳成分很少,密度3~3.5g/cm3或更大。
鐵隕石(iron meteorite)主要由金屬狀態的鐵、鎳組成的天然合金,密度8~8.5g/cm3或更大;
鐵石隕石 為上述兩類隕石的過渡類型,其中鐵、鎂硅酸鹽礦物與金屬狀態的鐵、鎳成分各佔一部分。
現代天文學及天文地質學的研究表明:①這些隕石應來自於太陽系內部的天體或小行星,當它們進入地球引力場時被地球吸引,並有相當一部分被大氣圈摩擦燃燒,其殘骸成為隕石落入地表。而太陽系以外的物質穿過遙遠的空間進入地球的可能性是極小的。②太陽系內部的物質成分及形成演化具有統一性,特別是人類登月獲得月球表面岩石與地球表面的某些岩石類似的事實,使太陽系物質統一性的信念進一步確立。因此,可以運用隕石的特徵推斷地球內部的物質狀態。
根據上述各方面的綜合研究,現今對地球內部各圈層的物質組成與狀態的認識如下:
(一)地殼
地殼是莫霍面以上的地球表層。其厚度變化在5~70km之間。其中大陸地區厚度較大,平均約為33km;大洋地區厚度較小,平均約7km;總體的平均厚度約16km,約佔地球半徑的1/400,佔地球總體積的1.55%,佔地球總質量的0.8%。地殼物質的密度一般為2.6~2.9g/cm3,其上部密度較小,向下部密度增大。地殼為固態岩石所組成,包括沉積岩、岩漿岩和變質岩三大岩類。由於地殼是當前地質學、地球物理學、地理學等學科的主要研究對象,因此,有關其詳細情況將在下一節作進一步介紹。
(二)地幔
地幔是地球的莫霍面以下、古登堡面(深2885km)以上的中間部分。其厚度約2850km,佔地球總體積的82.3%,佔地球總質量的67.8%,是地球的主體部分。從整個地幔可以通過地震波橫波的事實看,它主要由固態物質組成。根據地震波的次級不連續面,以650km深處為界,可將地幔分為上地幔和下地幔兩個次級圈層。
1.上地幔
上地幔的平均密度為3.5g/cm3,這一密度值與石隕石相當,暗示其可能具有與石隕石類似的物質成分。從火山噴發和構造運動從上地幔上部帶出來的深部物質來看,也均為超基性岩。近年來通過高溫高壓試驗來模擬地幔岩石的性質時發現,用橄欖岩55%、輝石35%、石榴子石10%的混合物作為樣品(礦物成分相當於超基性岩),在相當於上地幔的溫壓條件下測定其波速與密度,得到與上地幔基本一致的結果。根據以上理由推測,上地幔由相當於超基性岩的物質組成,其主要的礦物成分可能為橄欖石,有一部分為輝石與石榴子石,這種推測的地幔物質被稱為地幔岩。
上地幔上部存在一個軟流圈,約從70km延伸到250km左右,其特徵是出現地震波低速帶。物理實驗表明,波速降低可能是由於軟流圈物質發生部分熔融,使其強度降低而引起的。據地內溫度估算,軟流圈的溫度可達700~1300℃,已接近超基性岩在該壓力下的熔點溫度,因此一些易熔組分或熔點偏低的組分便可開始發生熔融。據計算,軟流圈的熔融物質可能僅佔1%~10%,熔融物質散布於固態物質之間,因而大大降低了強度,使軟流圈具較強的塑性或流動性。由於軟流圈物質已接近熔融的臨界狀態,因此它成為岩漿的重要發源地。
2.下地幔
下地幔的平均密度為5.1g/cm3,由於這里經受著強大的地內壓力作用,使得存在於上地幔的橄欖石等礦物分解成為FeO、MgO、SiO2和Al2O3等簡單的氧化物。與上地幔相比,其物質化學成分的變化可能主要表現為含鐵量的相對增加(或Fe/Mg的比例增大)。由於壓力隨深度的增大,物質密度和波速逐漸增加。
(三)地核
地核是地球內部古登堡面至地心的部分,其體積佔地球總體積的16.2%,質量卻佔地球總質量的31.3%,地核的密度達9.98~12.5g/cm3。根據地震波的傳播特點可將地核進一步分為三層:外核(深度2885~4170km)、過渡層(4170~5155km)和內核(5155km至地心)。在外核中,根據橫波不能通過,縱波發生大幅度衰減的事實推測其為液態;在內核中,橫波又重新出現,說明其又變為固態;過渡層則為液體—固體的過渡狀態。
地核的密度如此之大,從地表物質來看只有一些金屬物質才可與之相比,而地表最常見的金屬是鐵,其密度為8g/cm3,它在超高壓下完全可以達到地核的密度。地核的密度與鐵隕石較接近,也表明地核可能主要為鐵、鎳物質。地球具有主要由內部物質引起的磁場,這說明地球內部一定具有高磁性的鐵、鎳物質非常集中的某個圈層,而地殼、地幔中均不存在,那麼它應存在於地核中。此外,人們用爆破沖擊波提供的瞬時超高壓來模擬地核的壓力狀態,並測定一些元素在瞬時超高壓下的波速與密度,結果發現地核的波速與密度值與鐵、鎳比較接近。綜合多方面推測,地核應主要由鐵、鎳物質組成。近年來的進一步研究還發現,在地核的高壓下,純鐵、鎳的密度略顯偏高,推測地核最合理的物質組成應是鐵、鎳及少量的硅、硫等輕元素組成的合金。