㈠ 數學里的方程是誰發明的
大約2.71828
這里的e是一個數的代表符號,而我們要說的,便是e的故事。這倒叫人有點好奇了,要能說成一本書,這個數應該大有來頭才是,至少應該很有名吧?但是搜索枯腸,大部分人能想到的重要數字,除了眾人皆知的0及1外,大概就只有和圓有關的π了,了不起再加上虛數單位的i=√-1。這個e究竟是何方神聖呢?
在高中數學里,大家都學到過對數(logarithm)的觀念,也用過對數表。教科書里的對數表,是以10為底的,叫做常用對數(common logarithm)。課本里還簡略提到,有一種以無理數e=2.71828……為底數的對數,稱為自然對數(natural logarithm),這個e,正是我們故事的主角。不知這樣子說,是否引起你更大的疑惑呢?在十進位制系統里,用這樣奇怪的數為底,難道會比以10為底更「自然」嗎?更令人好奇的是,長得這麼奇怪的數,會有什麼故事可說呢?
這就要從古早時候說起了。至少在微積分發明之前半個世紀,就有人提到這個數,所以雖然它在微積分里常常出現,卻不是隨著微積分誕生的。那麼是在怎樣的狀況下導致它出現的呢?一個很可能的解釋是,這個數和計算利息有關。
我們都知道復利計息是怎麼回事,就是利息也可以並進本金再生利息。但是本利和的多寡,要看計息周期而定,以一年來說,可以一年只計息一次,也可以每半年計息一次,或者一季一次,一月一次,甚至一天一次;當然計息周期愈短,本利和就會愈高。有人因此而好奇,如果計息周期無限制地縮短,比如說每分鍾計息一次,甚至每秒,或者每一瞬間(理論上來說),會發生什麼狀況?本利和會無限制地加大嗎?答案是不會,它的值會穩定下來,趨近於一極限值,而e這個數就現身在該極限值當中(當然那時候還沒給這個數取名字叫e)。所以用現在的數學語言來說,e可以定義成一個極限值,但是在那時候,根本還沒有極限的觀念,因此e的值應該是觀察出來的,而不是用嚴謹的證明得到的。
包羅萬象的e
讀者恐怕已經在想,光是計算利息,應該不至於能講一整本書吧?當然不,利息只是極小的一部分。令人驚訝的是,這個與計算復利關系密切的數,居然和數學領域不同分支中的許多問題都有關聯。在討論e的源起時,除了復利計算以外,事實上還有許多其他的可能。問題雖然都不一樣,答案卻都殊途同歸地指向e這個數。比如其中一個有名的問題,就是求雙曲線y=1/x底下的面積。雙曲線和計算復利會有什麼關系,不管橫看、豎看、坐著想、躺著想,都想不出一個所以然對不對?可是這個面積算出來,卻和e有很密切的關聯。我才舉了一個例子而已,這本書里提到得更多。
如果整本書光是在講數學,還說成是說故事,就未免太不好意思了。事實上是,作者在探討數學的同時,穿插了許多有趣的相關故事。比如說你知道第一個對數表是誰發明的嗎?是納皮爾(John Napier)。沒有聽說過?這很正常,我也是讀到這本書才認識他的。重要的是要下一個問題。你知道納皮爾花了多少時間來建構整個對數表嗎?請注意這是發生在十六世紀末、十七世紀初的事情,別說電腦和計算機了,根本是什麼計算工具也沒有,所有的計算,只能利用紙筆一項一項慢慢地算,而又還不能利用對數來化乘除為加減,好簡化計算。因此納皮爾整整花了二十年的時間建立他的對數表,簡直是匪夷所思吧!試著想像一下二十年之間,每天都在重復做同類型的繁瑣計算,這種乏味的日子絕不是一般人能忍受的。但納皮爾熬過來了,而他的辛苦也得到了報償——對數受到了熱切的歡迎,許多歐洲甚至中國的科學家都迅速採用,連納皮爾也得到了來自世界各地的贊譽。最早使用對數的人當中,包括了大名鼎鼎的天文學家刻卜勒,他利用對數,簡化了行星軌道的繁復計算。
在《毛起來說e》中,還有許多我們在一般數學課本里讀不到的有趣事實。比如第一本微積分教科書是誰寫的呢?(假如你曾受微積分課程之苦,也會想知道誰是「始作俑者」吧?」)是羅必達先生。對啦,就是羅必達法則(L'Hospital's Rule)的那位羅必達。但是羅必達法則反倒是約翰.伯努利先發現的。不過這無關乎剽竊的問題,他們之間是有協議的。
說到伯努利可就有故事說了,這個家族實在不得了,別的家族出一位天才就可以偷笑了,而他們家族的天才是用「量產」形容。伯努利們前前後後在數學領域中活躍了一百年,他們的諸多成就(不僅止於數學領域),就算隨便列一列,也有一本書這麼厚。不過這個家族另外擅長的一件事就不太敢恭維了,那就是吵架。自家人吵不夠,也跟外面的人吵(可說是「表裡如一」)。連爸爸與兒子合得一個大獎,爸爸還非常不滿意,覺得應該由自己獨得,居然氣得把兒子趕出家門;和現代的許多「孝子」們比起來,這位爸爸真該感到慚愧。
e的「影響力」其實還不限於數學領域。大自然中太陽花的種子排列、鸚鵡螺殼上的花紋都呈現螺線的形狀,而螺線的方程式,是要用e來定義的。建構音階也要用到e,而如果把一條鏈子兩端固定,鬆鬆垂下,它呈現的形狀若用數學式子表示的話,也需要用到e。這些與計算利率或者雙曲線面積八竿子打不著的問題,居然統統和e有關,豈不奇妙?
數學其實沒那麼難!
我們每個人的成長過程中都讀過不少數學,但是在很多人心目中,數學似乎是門無趣甚至可怕的科目。尤其到了大學的微積分,到處都是定義、定理、公式,令人望之生畏。我們會害怕一個學科的原因之一,是有距離感,那些微積分里的東西,好像不知是從哪兒冒出來的,對它毫無感覺,也覺得和我毫無關系。如果我們知道微積分是怎麼演變、由誰發明的,而發明之時還發生了些什麼事(微積分是誰發明的這件事,爭論了許多年,對數學發展產生重大的影響),發明者又是什麼樣的人等等,這種距離感就應該會減少甚至消失,微積分就不再是「陌生人」了。
㈡ 簡易方程是誰發明的
1、最早的是3600年前,古埃及人寫在草紙上的數學問題中,出現含有未知數的等式。是方程的雛形。
4、公元825年左右,中亞細亞的數學家阿爾·花拉子米曾寫過一本名叫《對消與還原》的書,重點討論方程的解法。
2、公元1世紀,方程中文一詞出現在漢代數學專著《九章算術》,其第八卷即名「方程」。「方」意為並列,「程」意為用算籌表示豎式。
卷第八(一)為:今有上禾三秉,中禾二秉,下禾一秉,實三十九斗;上禾二秉,中禾三秉,下禾一秉,實三十四斗;上禾一秉,中禾二秉,下禾三秉,實二十六斗。問上、中、下禾實一秉各幾何?
答曰:上禾一秉,九斗、四分斗之一,中禾一秉,四斗、四分斗之一,下禾一秉,二斗、四分斗之三。
方程術曰:置上禾三秉,中禾二秉,下禾一秉,實三十九斗,於右方。中、左禾列如右方。以右行上禾遍乘中行而以直除。又乘其次,亦以直除。然以中行中禾不盡者遍乘左行而以直除。左方下禾不盡者,上為法,下為實。實即下禾之實。求中禾,以法乘中行下實,而除下禾之實。余如中禾秉數而一,即中禾之實。求上禾亦以法乘右行下實,而除下禾、中禾之實。余如上禾秉數而一,即上禾之實。實皆如法,各得一斗。
可以看出,已經有了系統的解法。
3、魏晉時期的劉徽在公元263年前後為《九章算術》作了大量注釋,創立了比「遍乘直除」更簡便的「互乘相消」法來解方程組。
㈢ 方程是誰發明的
方程是法國數學家韋達首創 。十六世紀,隨著各種數學符號的出現,法國數學家韋達創立內了較系統的表容示未知量和已知量的符號以後,「含有未知數的等式」 ,這一專門概念便出現了。方程史話:一、大約3600年前古埃及人寫在紙草上的數學問題中,就涉及了方程中含有未知數的等式。二、公元825年左右中亞細亞的數學家阿爾-花拉子米曾寫過一本名叫《對消與還原》的書,重點討論方程的解法。三、宋元時期中國數學家創立了「天元術」,用「天元」表示未知數進而建立方程。這種方法的代表作是數學家李冶寫的《測圓海鏡》(1248),書中所說的「立天元一」相當於「設未知數x。」所以在簡稱方程時,將未知數稱為「元」,如一個未知數的方程叫「一元方程」。而兩個以上的未知數,在古代又稱為「天元」、「地元」、「人元」。《九章算術·方程》白尚恕注釋:「『方』即方形,『程』即表達相課的意思,或者是表達式。於某一問題中,如有含若干個相關的數據,將這些相關的數據並肩排列成方形,則稱為『方程』。
㈣ 方程是誰發明的
沒分是不回答的~
㈤ 一元一次方程發明者是誰
一元一次方程式
--- 方程式的由來
十六世紀,隨著各種數學符號的相繼出現,特別是法國數學家韋達創
立了較系統的表示未知量和已知量的符號以後,"含有未知數的等式"
這一專門概念出現了,當時拉丁語稱它為"aequatio",英文為"equation".
十七世紀前後,歐洲代數首次傳進中國,當時譯"equation"為"相等式.
由於那時我國古代文化的勢力還較強,西方近代科學文化未能及時
在我國廣泛傳播和產生較的影響,因此"代數學"連同"相等式"等這
些學科或概念都只是在極少數人中學習和研究.
十九世紀中葉,近代西方數學再次傳入我國.1859年,李善蘭和英國
傳教士偉烈亞力,將英國數學家德.摩爾根的<代數初步>譯出. 李.偉
兩人很注重數學名詞的正確翻譯,他們借用或創設了近四百個數
學的漢譯名詞,許多至今一直沿用.其中,"equation"的譯名就是借
用了我國古代的"方程"一詞.這樣,"方程"一詞首次意為"含有未知
數的等式.
1873年,我國近代早期的又一個西方科學的傳播者華蘅芳,與英國傳
教士蘭雅合譯英國渥里斯的<代數學>,他們則把"equation"譯為"方程
式",他們的意思是,"方程"與"方程式"應該區別開來,方程仍指<九章
算術>中的意思,而方程式是指"今有未知數的等式".華.傅的主張在
很長時間裏被廣泛採納.直到1934年,中國數學學會對名詞進行一審
查,確定"方程"與"方程式"兩者意義相通.在廣義上,它們是指一元n次
方程以及由幾個方程聯立起來的方程組.狹義則專指一元n次方程.
既然"方程"與"方程式"同義,那麼"方程"就顯得更為簡潔明了了.
(本文摘自九章出版社之"數學誕生的故事")
㈥ 直線方程是誰發明
法國數學家韋達創
㈦ 方程是誰發現的
大約2.71828 這里的e是一個數的代表符號,而我們要說的,便是e的故事。這倒叫人有點好奇了,要能說成一本書,這個數應該大有來頭才是,至少應該很有名吧?但是搜索枯腸,大部分人能想到的重要數字,除了眾人皆知的0及1外,大概就只有和圓有關的π了,了不起再加上虛數單位的i=√-1。這個e究竟是何方神聖呢? 在高中數學里,大家都學到過對數(logarithm)的觀念,也用過對數表。教科書里的對數表,是以10為底的,叫做常用對數(common logarithm)。課本里還簡略提到,有一種以無理數e=2.71828……為底數的對數,稱為自然對數(natural logarithm),這個e,正是我們故事的主角。不知這樣子說,是否引起你更大的疑惑呢?在十進位制系統里,用這樣奇怪的數為底,難道會比以10為底更「自然」嗎?更令人好奇的是,長得這麼奇怪的數,會有什麼故事可說呢? 這就要從古早時候說起了。至少在微積分發明之前半個世紀,就有人提到這個數,所以雖然它在微積分里常常出現,卻不是隨著微積分誕生的。那麼是在怎樣的狀況下導致它出現的呢?一個很可能的解釋是,這個數和計算利息有關。 我們都知道復利計息是怎麼回事,就是利息也可以並進本金再生利息。但是本利和的多寡,要看計息周期而定,以一年來說,可以一年只計息一次,也可以每半年計息一次,或者一季一次,一月一次,甚至一天一次;當然計息周期愈短,本利和就會愈高。有人因此而好奇,如果計息周期無限制地縮短,比如說每分鍾計息一次,甚至每秒,或者每一瞬間(理論上來說),會發生什麼狀況?本利和會無限制地加大嗎?答案是不會,它的值會穩定下來,趨近於一極限值,而e這個數就現身在該極限值當中(當然那時候還沒給這個數取名字叫e)。所以用現在的數學語言來說,e可以定義成一個極限值,但是在那時候,根本還沒有極限的觀念,因此e的值應該是觀察出來的,而不是用嚴謹的證明得到的。 包羅萬象的e 讀者恐怕已經在想,光是計算利息,應該不至於能講一整本書吧?當然不,利息只是極小的一部分。令人驚訝的是,這個與計算復利關系密切的數,居然和數學領域不同分支中的許多問題都有關聯。在討論e的源起時,除了復利計算以外,事實上還有許多其他的可能。問題雖然都不一樣,答案卻都殊途同歸地指向e這個數。比如其中一個有名的問題,就是求雙曲線y=1/x底下的面積。雙曲線和計算復利會有什麼關系,不管橫看、豎看、坐著想、躺著想,都想不出一個所以然對不對?可是這個面積算出來,卻和e有很密切的關聯。我才舉了一個例子而已,這本書里提到得更多。 如果整本書光是在講數學,還說成是說故事,就未免太不好意思了。事實上是,作者在探討數學的同時,穿插了許多有趣的相關故事。比如說你知道第一個對數表是誰發明的嗎?是納皮爾(John Napier)。沒有聽說過?這很正常,我也是讀到這本書才認識他的。重要的是要下一個問題。你知道納皮爾花了多少時間來建構整個對數表嗎?請注意這是發生在十六世紀末、十七世紀初的事情,別說電腦和計算機了,根本是什麼計算工具也沒有,所有的計算,只能利用紙筆一項一項慢慢地算,而又還不能利用對數來化乘除為加減,好簡化計算。因此納皮爾整整花了二十年的時間建立他的對數表,簡直是匪夷所思吧!試著想像一下二十年之間,每天都在重復做同類型的繁瑣計算,這種乏味的日子絕不是一般人能忍受的。但納皮爾熬過來了,而他的辛苦也得到了報償——對數受到了熱切的歡迎,許多歐洲甚至中國的科學家都迅速採用,連納皮爾也得到了來自世界各地的贊譽。最早使用對數的人當中,包括了大名鼎鼎的天文學家刻卜勒,他利用對數,簡化了行星軌道的繁復計算。 在《毛起來說e》中,還有許多我們在一般數學課本里讀不到的有趣事實。比如第一本微積分教科書是誰寫的呢?(假如你曾受微積分課程之苦,也會想知道誰是「始作俑者」吧?」)是羅必達先生。對啦,就是羅必達法則(L'Hospital's Rule)的那位羅必達。但是羅必達法則反倒是約翰.伯努利先發現的。不過這無關乎剽竊的問題,他們之間是有協議的。 說到伯努利可就有故事說了,這個家族實在不得了,別的家族出一位天才就可以偷笑了,而他們家族的天才是用「量產」形容。伯努利們前前後後在數學領域中活躍了一百年,他們的諸多成就(不僅止於數學領域),就算隨便列一列,也有一本書這麼厚。不過這個家族另外擅長的一件事就不太敢恭維了,那就是吵架。自家人吵不夠,也跟外面的人吵(可說是「表裡如一」)。連爸爸與兒子合得一個大獎,爸爸還非常不滿意,覺得應該由自己獨得,居然氣得把兒子趕出家門;和現代的許多「孝子」們比起來,這位爸爸真該感到慚愧。 e的「影響力」其實還不限於數學領域。大自然中太陽花的種子排列、鸚鵡螺殼上的花紋都呈現螺線的形狀,而螺線的方程式,是要用e來定義的。建構音階也要用到e,而如果把一條鏈子兩端固定,鬆鬆垂下,它呈現的形狀若用數學式子表示的話,也需要用到e。這些與計算利率或者雙曲線面積八竿子打不著的問題,居然統統和e有關,豈不奇妙? 數學其實沒那麼難! 我們每個人的成長過程中都讀過不少數學,但是在很多人心目中,數學似乎是門無趣甚至可怕的科目。尤其到了大學的微積分,到處都是定義、定理、公式,令人望之生畏。我們會害怕一個學科的原因之一,是有距離感,那些微積分里的東西,好像不知是從哪兒冒出來的,對它毫無感覺,也覺得和我毫無關系。如果我們知道微積分是怎麼演變、由誰發明的,而發明之時還發生了些什麼事(微積分是誰發明的這件事,爭論了許多年,對數學發展產生重大的影響),發明者又是什麼樣的人等等,這種距離感就應該會減少甚至消失,微積分就不再是「陌生人」了。
㈧ 誰發明了方程
一元一次方程式
--- 方程式的由來
十六世紀,隨著各種數學符號的相繼出現,特別是法國數學家韋達創
立了較系統的表示未知量和已知量的符號以後,"含有未知數的等式"
這一專門概念出現了,當時拉丁語稱它為"aequatio",英文為"equation".
十七世紀前後,歐洲代數首次傳進中國,當時譯"equation"為"相等式.
由於那時我國古代文化的勢力還較強,西方近代科學文化未能及時
在我國廣泛傳播和產生較的影響,因此"代數學"連同"相等式"等這
些學科或概念都只是在極少數人中學習和研究.
十九世紀中葉,近代西方數學再次傳入我國.1859年,李善蘭和英國
傳教士偉烈亞力,將英國數學家德.摩爾根的<代數初步>譯出. 李.偉
兩人很注重數學名詞的正確翻譯,他們借用或創設了近四百個數
學的漢譯名詞,許多至今一直沿用.其中,"equation"的譯名就是借
用了我國古代的"方程"一詞.這樣,"方程"一詞首次意為"含有未知
數的等式.
1873年,我國近代早期的又一個西方科學的傳播者華蘅芳,與英國傳
教士蘭雅合譯英國渥里斯的<代數學>,他們則把"equation"譯為"方程
式",他們的意思是,"方程"與"方程式"應該區別開來,方程仍指<九章
算術>中的意思,而方程式是指"今有未知數的等式".華.傅的主張在
很長時間裏被廣泛採納.直到1934年,中國數學學會對名詞進行一審
查,確定"方程"與"方程式"兩者意義相通.在廣義上,它們是指一元n次
方程以及由幾個方程聯立起來的方程組.狹義則專指一元n次方程.
既然"方程"與"方程式"同義,那麼"方程"就顯得更為簡潔明了了.
(本文摘自九章出版社之"數學誕生的故事")
㈨ 方程式是誰發明的
法國數學家韋達首創 .
十六世紀,隨著各種數學符號的出現,法國數學家韋達創立了較系統的表示未知量和已知量的符號以後,「含有未知數的等式」 ,這一專門概念便出現了.
(摘自九章出版社「數學誕生的故事」)