豎式的沿革沒有典籍記載
我國古代數學以計算為主,取得了十分輝煌的成就。其中十進位值制記數法、籌算和珠算在數學發展中所起的作用和顯示出來的優越性,在世界數學史上也是值得稱道的。
十進位值制記數法曾經被馬克思(1818—1883)稱為「最妙的發明之一」①。
從有文字記載開始,我國的記數法就遵循十進制。殷代的甲骨文和西周的鍾鼎文都是用一、二、三、四、五、六、七、八、九、十、百、千、萬等字的合文來記十萬以內的自然數的。例如二千六百五十六寫作■■■■(甲骨文),六百五十九寫作■■■■■(鍾鼎文)。這種記數法含有明顯的位值制意義,實際上,只要把「千」、「百」、「十」和「又」的字樣取消,便和位值制記數法基本一樣了。
春秋戰國時期是我國從奴隸制轉變到封建制的時期,生產的迅速發展和科學技術的進步提出了大量比較復雜的數字計算問題。為了適應這種需要,勞動人民創造了一種十分重要的計算方法——籌算。我們認為籌算是完成於春秋戰國時期,理由是:第一,春秋戰國時期,農業、商業和天文歷法方面有了飛躍的發展,在這些領域中,出現了大量比以前復雜得多的計算問題。由於井田制的廢除,各種形狀的私田相繼出現,並相應實行按畝收稅的制度,這就需要計算復雜形狀的土地面積和產量;商業貿易的增加和貨幣的廣泛使用,提出了大量比例換算的問題;適應當時農業需要的厲法,要計算多位數的乘法和除法。為了解決這些復雜的計算問題,才創造出計算工具算籌和計算方法籌算。第二,現有的文獻和文物也證明籌算出現在春秋戰國時期。例如「算」和「籌」二字出現在春秋戰國時期的著作(如《儀禮》、《孫子》、《老子》、《法經》、《管子》、《荀子》等)中,甲骨文和鍾鼎文中到現在仍沒有見到這兩個字。一二三以外的籌算數字最早出現在戰國時期的貨幣(刀、布)上。《老子》提到:「善計者不用籌策」,可見這時籌算已經比較普遍了。因此我們說籌算是完成於春秋戰國時期。這並不否認在春秋戰國時期以前就有簡單的算籌記數和簡單的四則運算。
關於算籌形狀和大小,最早見於《漢書·律歷志》。根據記載,算籌是直徑一分(合○·二三厘米)、長六寸(合一三·八六厘米)的圓形竹棍,以二百七十一根為一「握」。南北朝時期公元六世紀《數術記遺》和《隋書·律歷志》記載的算籌,長度縮短,並且把圓的改成方的或扁的。這種改變是容易理解的:長度縮短是為了縮小布算所佔的面積,以適應更加復雜的計算;圓的改成方的或扁的是為了避免圓形算籌容易滾動而造成錯誤。根據文獻的記載,算籌除竹籌外,還有木籌、鐵籌、玉籌和牙籌,還有盛裝算籌的算袋和運算元筒。唐代曾經規定,文武官員必須攜帶算袋。1971年八月中旬,在陝西寶雞市千陽縣第一次發現西漢宣帝時期(公元前73年到前49年)的骨制算籌三十多根,大小長短和《漢書·律歷志》的記載基本相同。1975年上半年在湖北江陵鳳凰山一六八號漢墓又發現西漢文帝時期(公元前179年到前157年)的竹製算籌一束,長度比千陽縣發現的算籌稍大一點。1980年九月,在石家莊市又發現東漢初期(公元一世紀)的骨制算籌約三十根,長度和形狀同《隋書·律歷志》的記載相近,這說明算籌長度和形狀的改變早在東漢初期已經開始。算籌的出土,為研究我國數學發展史提供了可貴的實物資料。
從而進行加、減、乘、除、開方以及其他的代數計算。
籌算一出現,就嚴格遵循十進位值制記數法。九以上的數就進一位,同一個數字放在百位就是幾百,放在萬位就是幾萬。這種記數法,除所用的數字和現今通用的印度-阿拉伯數字形式不同外,和現在的記數法實質是一樣的。籌算是把算籌一面擺成數字,一面進行計算,它的運算程序和現今珠算的運算程序基本相似。記述籌算記數法和運演算法則的著作有《孫子算經》(公元四世紀)、《夏侯陽算經》(公元五世紀)和《數術記遺》(公元六世紀)。負數出現後,算籌分成紅黑兩種,紅籌表示正數,黑籌表示負數。算籌還可以表示各種代數式,進行各種代數運算,方法和現今的分離系數法相似。我國古代在數字計算和代數學方面取得的輝煌成就,和籌算有密切的關系。例如祖沖之的圓周率准確到小數第六位,需要計算正一萬二千二百八十八邊形的邊長,把一個九位數進行二十二次開平方(加、減、乘、除步驟除外),如果沒有十進位值制的計算方法,那就會困難得多了。
古巴比侖的記數法雖然有位值制的意義,但是它是六十進的,計算比較繁瑣。古埃及的數字從一到十隻有兩個數字元號,從一百到一千萬有四個數字元號,而且是象形的,例如用一個鳥表示十萬。文化比較發達的古希臘,由於看重幾何,輕視計算,記數方法十分落後,用全部希臘字母表示一到一
民創造的,但是印度在公元三世紀以前使用的記數法是希臘式和羅馬式兩種,都不是位值制,真正使用十進位值制記數法出現在公元六世紀末。由此可見,我國古代的十進位值制記數法和籌算,在世界數學史上應該佔有重要的地位。
籌算在我國古代用了大約兩千年,在生產和科學技術以至人民生活中,發揮了重大的作用。但是它的缺點也是十分明顯的:首先,在室外拿著一大把算籌進行計算就很不方便;其次,計算數字的位數越多,所需要的面積越大,受環境和條件的限制;此外,當計算速度加快的時候,很容易由於算籌擺弄不正而造成錯誤。隨著社會的發展,計算技術要求越來越高,籌算需要改革,這是勢在必行的。這個改革從中唐以後的商業實用算術開始,經宋元出現大量的計算歌訣,到元末明初珠算的普遍應用,歷時七百多年。《新唐書》和《宋史·藝文志》記載了這個時期出現的大量著作。由於封建統治階級對民間數學十分輕視,以致這些著作的絕大部分已經失傳。從遺留下來的著作中可以看出,籌算的改革是從籌算的簡化開始而不是從工具改革開始的,這個改革最後導致珠算的出現。
珠算是由籌算演變而來的,這是十分清楚的。籌算數字中,上面一根籌當五,下面一根籌當一,珠算盤中的上一珠也是當五,下一珠也是當一;由於籌算在乘、除法中出現某位數字等於十或多於十的情形(例如26532÷8,
採用上二珠下五珠的形式。其次,我們可以證明,從楊輝、朱世傑開始到元末丁巨、何平子、賈亨止的除「起一」法外的全部現今通用的珠算歌訣,是為籌算而設的。楊輝的《乘除通變本末》(公元1274年)和朱世傑的《算學啟蒙》(公元1299年)已經有相當完備的歌訣,但是楊輝在《乘除通變本末》中說:「下算不出『橫』『直』」,其中「橫」「直」顯然是指算籌的縱橫排列;朱世傑在《算學啟蒙》中提到「知算縱橫數目真」,也是這個意思。《丁巨演算法》(公元1355年)、何平子的《詳明演算法》(公元1373年)、賈亨的《演算法全能》(約公元1373年)也有相當完備的歸除歌訣,但是都沒有提到珠算,而《詳明演算法》還有許多籌算算草。歌訣出現後,籌算原來存在的缺點就更突出了,歌訣的快捷和擺弄算籌的遲緩存在矛盾。為了得心應手,勞動人民便創造出更加先進的計算工具——珠算盤。
現存文獻中最早提到珠算盤的是明初的《對相四言》。明代中期公元十五世紀中葉《魯班木經》中有製造珠算盤的規格:「算盤式:一尺二寸長,四寸二分大。框六分厚,九分大,……線上二子,一寸一分;線下五子,三寸一分。長短大小,看子而做。」把上二子和下五子隔開的不是木製的橫梁,而是一條線。比較詳細地說明珠算用法的現存著作有徐心魯的《盤珠演算法》(公元1573年)、柯尚遷的《數學通軌》(公元1578年)、朱載堉(1536—1611)的《算學新說》(公元1584年)、程大位的《直指演算法統宗》(公元1592年)等,以程大位的著作流傳最廣。
值得指出的是,在元代中葉和元末的文學、戲劇作品中有提到珠算的。例如元世祖至元十六年(公元1279年)劉因在他的《靜修先生文集》中有一首關於算盤的五言絕詩;陶宗儀在他的《輟耕錄》中把婢僕貶作算盤珠,要撥才動;《元曲選》「龐居士誤放來生債」提到「去那算盤里撥了我的歲數」,等等。文學、戲劇中用算盤珠作比喻,說明珠算盤已經比較流行,也說明它是比較時新的東西。因此可以認為,珠算出現在元代中葉,元末明初已經普遍應用了。
有的外國學者認為我國的珠算出現在漢代,他們的根據是漢徐岳著、北周甄鸞注的《數術記遺》已經明確提到珠算。我國數學家、數學史家錢寶琮(1892—1974)曾經考證過,《數術記遺》是甄鸞依託偽造而自己注釋的書。在北周時,乘、除運算都在上、中、下三層進行,又沒有簡化乘、除法的歌訣,因此甄鸞注釋的珠算,充其量不過是一種記數工具或者只能作加減法的簡單算盤,和後來出現的珠算是完全不同的。
珠算還傳到朝鮮、日本等國,對這些國家的計算技術的發展曾經起過一定的作用。日本人在十七世紀中葉,在中國算盤的基礎上,改成樑上一珠、珠作棱形的日本算盤。
B. 數學中的豎式是誰發明的
豎式的沿革沒有典籍記載 我國古代數學以計算為主,取得了十分輝煌的成就。其中十進位值制記數法、籌算和珠算在數學發展中所起的作用和顯示出來的優越性,在世界數學史上也是值得稱道的。 十進位值制記數法曾經被馬克思(1818—1883)稱為「最妙的發明之一」①。 從有文字記載開始,我國的記數法就遵循十進制。殷代的甲骨文和西周的鍾鼎文都是用一、二、三、四、五、六、七、八、九、十、百、千、萬等字的合文來記十萬以內的自然數的。例如二千六百五十六寫作■■■■(甲骨文),六百五十九寫作■■■■■(鍾鼎文)。這種記數法含有明顯的位值制意義,實際上,只要把「千」、「百」、「十」和「又」的字樣取消,便和位值制記數法基本一樣了。 春秋戰國時期是我國從奴隸制轉變到封建制的時期,生產的迅速發展和科學技術的進步提出了大量比較復雜的數字計算問題。為了適應這種需要,勞動人民創造了一種十分重要的計算方法——籌算。我們認為籌算是完成於春秋戰國時期,理由是:第一,春秋戰國時期,農業、商業和天文歷法方面有了飛躍的發展,在這些領域中,出現了大量比以前復雜得多的計算問題。由於井田制的廢除,各種形狀的私田相繼出現,並相應實行按畝收稅的制度,這就需要計算復雜形狀的土地面積和產量;商業貿易的增加和貨幣的廣泛使用,提出了大量比例換算的問題;適應當時農業需要的厲法,要計算多位數的乘法和除法。為了解決這些復雜的計算問題,才創造出計算工具算籌和計算方法籌算。第二,現有的文獻和文物也證明籌算出現在春秋戰國時期。例如「算」和「籌」二字出現在春秋戰國時期的著作(如《儀禮》、《孫子》、《老子》、《法經》、《管子》、《荀子》等)中,甲骨文和鍾鼎文中到現在仍沒有見到這兩個字。一二三以外的籌算數字最早出現在戰國時期的貨幣(刀、布)上。《老子》提到:「善計者不用籌策」,可見這時籌算已經比較普遍了。因此我們說籌算是完成於春秋戰國時期。這並不否認在春秋戰國時期以前就有簡單的算籌記數和簡單的四則運算。 關於算籌形狀和大小,最早見於《漢書·律歷志》。根據記載,算籌是直徑一分(合○·二三厘米)、長六寸(合一三·八六厘米)的圓形竹棍,以二百七十一根為一「握」。南北朝時期公元六世紀《數術記遺》和《隋書·律歷志》記載的算籌,長度縮短,並且把圓的改成方的或扁的。這種改變是容易理解的:長度縮短是為了縮小布算所佔的面積,以適應更加復雜的計算;圓的改成方的或扁的是為了避免圓形算籌容易滾動而造成錯誤。根據文獻的記載,算籌除竹籌外,還有木籌、鐵籌、玉籌和牙籌,還有盛裝算籌的算袋和運算元筒。唐代曾經規定,文武官員必須攜帶算袋。1971年八月中旬,在陝西寶雞市千陽縣第一次發現西漢宣帝時期(公元前73年到前49年)的骨制算籌三十多根,大小長短和《漢書·律歷志》的記載基本相同。1975年上半年在湖北江陵鳳凰山一六八號漢墓又發現西漢文帝時期(公元前179年到前157年)的竹製算籌一束,長度比千陽縣發現的算籌稍大一點。1980年九月,在石家莊市又發現東漢初期(公元一世紀)的骨制算籌約三十根,長度和形狀同《隋書·律歷志》的記載相近,這說明算籌長度和形狀的改變早在東漢初期已經開始。算籌的出土,為研究我國數學發展史提供了可貴的實物資料。 從而進行加、減、乘、除、開方以及其他的代數計算。 籌算一出現,就嚴格遵循十進位值制記數法。九以上的數就進一位,同一個數字放在百位就是幾百,放在萬位就是幾萬。這種記數法,除所用的數字和現今通用的印度-阿拉伯數字形式不同外,和現在的記數法實質是一樣的。籌算是把算籌一面擺成數字,一面進行計算,它的運算程序和現今珠算的運算程序基本相似。記述籌算記數法和運演算法則的著作有《孫子算經》(公元四世紀)、《夏侯陽算經》(公元五世紀)和《數術記遺》(公元六世紀)。負數出現後,算籌分成紅黑兩種,紅籌表示正數,黑籌表示負數。算籌還可以表示各種代數式,進行各種代數運算,方法和現今的分離系數法相似。我國古代在數字計算和代數學方面取得的輝煌成就,和籌算有密切的關系。例如祖沖之的圓周率准確到小數第六位,需要計算正一萬二千二百八十八邊形的邊長,把一個九位數進行二十二次開平方(加、減、乘、除步驟除外),如果沒有十進位值制的計算方法,那就會困難得多了。 古巴比侖的記數法雖然有位值制的意義,但是它是六十進的,計算比較繁瑣。古埃及的數字從一到十隻有兩個數字元號,從一百到一千萬有四個數字元號,而且是象形的,例如用一個鳥表示十萬。文化比較發達的古希臘,由於看重幾何,輕視計算,記數方法十分落後,用全部希臘字母表示一到一 民創造的,但是印度在公元三世紀以前使用的記數法是希臘式和羅馬式兩種,都不是位值制,真正使用十進位值制記數法出現在公元六世紀末。由此可見,我國古代的十進位值制記數法和籌算,在世界數學史上應該佔有重要的地位。 籌算在我國古代用了大約兩千年,在生產和科學技術以至人民生活中,發揮了重大的作用。但是它的缺點也是十分明顯的:首先,在室外拿著一大把算籌進行計算就很不方便;其次,計算數字的位數越多,所需要的面積越大,受環境和條件的限制;此外,當計算速度加快的時候,很容易由於算籌擺弄不正而造成錯誤。隨著社會的發展,計算技術要求越來越高,籌算需要改革,這是勢在必行的。這個改革從中唐以後的商業實用算術開始,經宋元出現大量的計算歌訣,到元末明初珠算的普遍應用,歷時七百多年。《新唐書》和《宋史·藝文志》記載了這個時期出現的大量著作。由於封建統治階級對民間數學十分輕視,以致這些著作的絕大部分已經失傳。從遺留下來的著作中可以看出,籌算的改革是從籌算的簡化開始而不是從工具改革開始的,這個改革最後導致珠算的出現。 珠算是由籌算演變而來的,這是十分清楚的。籌算數字中,上面一根籌當五,下面一根籌當一,珠算盤中的上一珠也是當五,下一珠也是當一;由於籌算在乘、除法中出現某位數字等於十或多於十的情形(例如26532÷8, 採用上二珠下五珠的形式。其次,我們可以證明,從楊輝、朱世傑開始到元末丁巨、何平子、賈亨止的除「起一」法外的全部現今通用的珠算歌訣,是為籌算而設的。楊輝的《乘除通變本末》(公元1274年)和朱世傑的《算學啟蒙》(公元1299年)已經有相當完備的歌訣,但是楊輝在《乘除通變本末》中說:「下算不出『橫』『直』」,其中「橫」「直」顯然是指算籌的縱橫排列;朱世傑在《算學啟蒙》中提到「知算縱橫數目真」,也是這個意思。《丁巨演算法》(公元1355年)、何平子的《詳明演算法》(公元1373年)、賈亨的《演算法全能》(約公元1373年)也有相當完備的歸除歌訣,但是都沒有提到珠算,而《詳明演算法》還有許多籌算算草。歌訣出現後,籌算原來存在的缺點就更突出了,歌訣的快捷和擺弄算籌的遲緩存在矛盾。為了得心應手,勞動人民便創造出更加先進的計算工具——珠算盤。 現存文獻中最早提到珠算盤的是明初的《對相四言》。明代中期公元十五世紀中葉《魯班木經》中有製造珠算盤的規格:「算盤式:一尺二寸長,四寸二分大。框六分厚,九分大,……線上二子,一寸一分;線下五子,三寸一分。長短大小,看子而做。」把上二子和下五子隔開的不是木製的橫梁,而是一條線。比較詳細地說明珠算用法的現存著作有徐心魯的《盤珠演算法》(公元1573年)、柯尚遷的《數學通軌》(公元1578年)、朱載堉(1536—1611)的《算學新說》(公元1584年)、程大位的《直指演算法統宗》(公元1592年)等,以程大位的著作流傳最廣。 值得指出的是,在元代中葉和元末的文學、戲劇作品中有提到珠算的。例如元世祖至元十六年(公元1279年)劉因在他的《靜修先生文集》中有一首關於算盤的五言絕詩;陶宗儀在他的《輟耕錄》中把婢僕貶作算盤珠,要撥才動;《元曲選》「龐居士誤放來生債」提到「去那算盤里撥了我的歲數」,等等。文學、戲劇中用算盤珠作比喻,說明珠算盤已經比較流行,也說明它是比較時新的東西。因此可以認為,珠算出現在元代中葉,元末明初已經普遍應用了。 有的外國學者認為我國的珠算出現在漢代,他們的根據是漢徐岳著、北周甄鸞注的《數術記遺》已經明確提到珠算。我國數學家、數學史家錢寶琮(1892—1974)曾經考證過,《數術記遺》是甄鸞依託偽造而自己注釋的書。在北周時,乘、除運算都在上、中、下三層進行,又沒有簡化乘、除法的歌訣,因此甄鸞注釋的珠算,充其量不過是一種記數工具或者只能作加減法的簡單算盤,和後來出現的珠算是完全不同的。 珠算還傳到朝鮮、日本等國,對這些國家的計算技術的發展曾經起過一定的作用。日本人在十七世紀中葉,在中國算盤的基礎上,改成樑上一珠、珠作棱形的日本算盤
C. 豎式計算是誰發明的他的名字
豎式的沿革沒有典籍記載
我國古代數學以計算為主,取得了十分輝煌的成就。其中十進位值制記數法、籌算和珠算在數學發展中所起的作用和顯示出來的優越性,在世界數學史上也是值得稱道的。
十進位值制記數法曾經被馬克思(1818—1883)稱為「最妙的發明之一」①。
從有文字記載開始,我國的記數法就遵循十進制。殷代的甲骨文和西周的鍾鼎文都是用一、二、三、四、五、六、七、八、九、十、百、千、萬等字的合文來記十萬以內的自然數的。例如二千六百五十六寫作■■■■(甲骨文),六百五十九寫作■■■■■(鍾鼎文)。這種記數法含有明顯的位值制意義,實際上,只要把「千」、「百」、「十」和「又」的字樣取消,便和位值制記數法基本一樣了。
春秋戰國時期是我國從奴隸制轉變到封建制的時期,生產的迅速發展和科學技術的進步提出了大量比較復雜的數字計算問題。為了適應這種需要,勞動人民創造了一種十分重要的計算方法——籌算。我們認為籌算是完成於春秋戰國時期,理由是:第一,春秋戰國時期,農業、商業和天文歷法方面有了飛躍的發展,在這些領域中,出現了大量比以前復雜得多的計算問題。由於井田制的廢除,各種形狀的私田相繼出現,並相應實行按畝收稅的制度,這就需要計算復雜形狀的土地面積和產量;商業貿易的增加和貨幣的廣泛使用,提出了大量比例換算的問題;適應當時農業需要的厲法,要計算多位數的乘法和除法。為了解決這些復雜的計算問題,才創造出計算工具算籌和計算方法籌算。第二,現有的文獻和文物也證明籌算出現在春秋戰國時期。例如「算」和「籌」二字出現在春秋戰國時期的著作(如《儀禮》、《孫子》、《老子》、《法經》、《管子》、《荀子》等)中,甲骨文和鍾鼎文中到現在仍沒有見到這兩個字。一二三以外的籌算數字最早出現在戰國時期的貨幣(刀、布)上。《老子》提到:「善計者不用籌策」,可見這時籌算已經比較普遍了。因此我們說籌算是完成於春秋戰國時期。這並不否認在春秋戰國時期以前就有簡單的算籌記數和簡單的四則運算。
關於算籌形狀和大小,最早見於《漢書·律歷志》。根據記載,算籌是直徑一分(合○·二三厘米)、長六寸(合一三·八六厘米)的圓形竹棍,以二百七十一根為一「握」。南北朝時期公元六世紀《數術記遺》和《隋書·律歷志》記載的算籌,長度縮短,並且把圓的改成方的或扁的。這種改變是容易理解的:長度縮短是為了縮小布算所佔的面積,以適應更加復雜的計算;圓的改成方的或扁的是為了避免圓形算籌容易滾動而造成錯誤。根據文獻的記載,算籌除竹籌外,還有木籌、鐵籌、玉籌和牙籌,還有盛裝算籌的算袋和運算元筒。唐代曾經規定,文武官員必須攜帶算袋。1971年八月中旬,在陝西寶雞市千陽縣第一次發現西漢宣帝時期(公元前73年到前49年)的骨制算籌三十多根,大小長短和《漢書·律歷志》的記載基本相同。1975年上半年在湖北江陵鳳凰山一六八號漢墓又發現西漢文帝時期(公元前179年到前157年)的竹製算籌一束,長度比千陽縣發現的算籌稍大一點。1980年九月,在石家莊市又發現東漢初期(公元一世紀)的骨制算籌約三十根,長度和形狀同《隋書·律歷志》的記載相近,這說明算籌長度和形狀的改變早在東漢初期已經開始。算籌的出土,為研究我國數學發展史提供了可貴的實物資料。
從而進行加、減、乘、除、開方以及其他的代數計算。
籌算一出現,就嚴格遵循十進位值制記數法。九以上的數就進一位,同一個數字放在百位就是幾百,放在萬位就是幾萬。這種記數法,除所用的數字和現今通用的印度-阿拉伯數字形式不同外,和現在的記數法實質是一樣的。籌算是把算籌一面擺成數字,一面進行計算,它的運算程序和現今珠算的運算程序基本相似。記述籌算記數法和運演算法則的著作有《孫子算經》(公元四世紀)、《夏侯陽算經》(公元五世紀)和《數術記遺》(公元六世紀)。負數出現後,算籌分成紅黑兩種,紅籌表示正數,黑籌表示負數。算籌還可以表示各種代數式,進行各種代數運算,方法和現今的分離系數法相似。我國古代在數字計算和代數學方面取得的輝煌成就,和籌算有密切的關系。例如祖沖之的圓周率准確到小數第六位,需要計算正一萬二千二百八十八邊形的邊長,把一個九位數進行二十二次開平方(加、減、乘、除步驟除外),如果沒有十進位值制的計算方法,那就會困難得多了。
古巴比侖的記數法雖然有位值制的意義,但是它是六十進的,計算比較繁瑣。古埃及的數字從一到十隻有兩個數字元號,從一百到一千萬有四個數字元號,而且是象形的,例如用一個鳥表示十萬。文化比較發達的古希臘,由於看重幾何,輕視計算,記數方法十分落後,用全部希臘字母表示一到一
民創造的,但是印度在公元三世紀以前使用的記數法是希臘式和羅馬式兩種,都不是位值制,真正使用十進位值制記數法出現在公元六世紀末。由此可見,我國古代的十進位值制記數法和籌算,在世界數學史上應該佔有重要的地位。
籌算在我國古代用了大約兩千年,在生產和科學技術以至人民生活中,發揮了重大的作用。但是它的缺點也是十分明顯的:首先,在室外拿著一大把算籌進行計算就很不方便;其次,計算數字的位數越多,所需要的面積越大,受環境和條件的限制;此外,當計算速度加快的時候,很容易由於算籌擺弄不正而造成錯誤。隨著社會的發展,計算技術要求越來越高,籌算需要改革,這是勢在必行的。這個改革從中唐以後的商業實用算術開始,經宋元出現大量的計算歌訣,到元末明初珠算的普遍應用,歷時七百多年。《新唐書》和《宋史·藝文志》記載了這個時期出現的大量著作。由於封建統治階級對民間數學十分輕視,以致這些著作的絕大部分已經失傳。從遺留下來的著作中可以看出,籌算的改革是從籌算的簡化開始而不是從工具改革開始的,這個改革最後導致珠算的出現。
珠算是由籌算演變而來的,這是十分清楚的。籌算數字中,上面一根籌當五,下面一根籌當一,珠算盤中的上一珠也是當五,下一珠也是當一;由於籌算在乘、除法中出現某位數字等於十或多於十的情形(例如26532÷8,
採用上二珠下五珠的形式。其次,我們可以證明,從楊輝、朱世傑開始到元末丁巨、何平子、賈亨止的除「起一」法外的全部現今通用的珠算歌訣,是為籌算而設的。楊輝的《乘除通變本末》(公元1274年)和朱世傑的《算學啟蒙》(公元1299年)已經有相當完備的歌訣,但是楊輝在《乘除通變本末》中說:「下算不出『橫』『直』」,其中「橫」「直」顯然是指算籌的縱橫排列;朱世傑在《算學啟蒙》中提到「知算縱橫數目真」,也是這個意思。《丁巨演算法》(公元1355年)、何平子的《詳明演算法》(公元1373年)、賈亨的《演算法全能》(約公元1373年)也有相當完備的歸除歌訣,但是都沒有提到珠算,而《詳明演算法》還有許多籌算算草。歌訣出現後,籌算原來存在的缺點就更突出了,歌訣的快捷和擺弄算籌的遲緩存在矛盾。為了得心應手,勞動人民便創造出更加先進的計算工具——珠算盤。
現存文獻中最早提到珠算盤的是明初的《對相四言》。明代中期公元十五世紀中葉《魯班木經》中有製造珠算盤的規格:「算盤式:一尺二寸長,四寸二分大。框六分厚,九分大,……線上二子,一寸一分;線下五子,三寸一分。長短大小,看子而做。」把上二子和下五子隔開的不是木製的橫梁,而是一條線。比較詳細地說明珠算用法的現存著作有徐心魯的《盤珠演算法》(公元1573年)、柯尚遷的《數學通軌》(公元1578年)、朱載堉(1536—1611)的《算學新說》(公元1584年)、程大位的《直指演算法統宗》(公元1592年)等,以程大位的著作流傳最廣。
值得指出的是,在元代中葉和元末的文學、戲劇作品中有提到珠算的。例如元世祖至元十六年(公元1279年)劉因在他的《靜修先生文集》中有一首關於算盤的五言絕詩;陶宗儀在他的《輟耕錄》中把婢僕貶作算盤珠,要撥才動;《元曲選》「龐居士誤放來生債」提到「去那算盤里撥了我的歲數」,等等。文學、戲劇中用算盤珠作比喻,說明珠算盤已經比較流行,也說明它是比較時新的東西。因此可以認為,珠算出現在元代中葉,元末明初已經普遍應用了。
有的外國學者認為我國的珠算出現在漢代,他們的根據是漢徐岳著、北周甄鸞注的《數術記遺》已經明確提到珠算。我國數學家、數學史家錢寶琮(1892—1974)曾經考證過,《數術記遺》是甄鸞依託偽造而自己注釋的書。在北周時,乘、除運算都在上、中、下三層進行,又沒有簡化乘、除法的歌訣,因此甄鸞注釋的珠算,充其量不過是一種記數工具或者只能作加減法的簡單算盤,和後來出現的珠算是完全不同的。
珠算還傳到朝鮮、日本等國,對這些國家的計算技術的發展曾經起過一定的作用。日本人在十七世紀中葉,在中國算盤的基礎上,改成樑上一珠、珠作棱形的日本算盤
D. 豎式是什麼時候發明的
豎式的沿革沒有典籍來記載
我國古自代數學以計算為主,取得了十分輝煌的成就.其中十進位值制記數法、籌算和珠算在數學發展中所起的作用和顯示出來的優越性,在世界數學史上也是值得稱道的.
十進位值制記數法曾經被馬克思(1818—1883)稱為「最妙的發明之一」①.
從有文字記載開始,我國的記數法就遵循十進制.殷代的甲骨文和西周的鍾鼎文都是用一、二、三、四、五、六、七、八、九、十、百、千、萬等字的合文來記十萬以內的自然數的.例如二千六百五十六寫作■■■■(甲骨文),六百五十九寫作■■■■■(鍾鼎文).這種記數法含有明顯的位值制意義,實際上,只要把「千」、「百」、「十」和「又」的字樣取消,便和位值制記數法基本一樣了.
E. 除法豎式計算是誰發明的
豎式的沿革沒有典籍記載我國古代數學以計算為主,取得了十分輝煌的成就.其中十進位值制記數法、籌算和珠算在數學發展中所起的作用和顯示出來的優越性
F. 兩邊一拉中間一加是誰發明的
這是一個數乘以11的規律。
一個數乘以11,可以把這個數拉開,個位數字作積的個位,最高位數字作積的最高位,中間的數字由相鄰的數字相加而成。如果中間的一位數滿十,就向前一位進一。
觀察豎式計算,可以找到其中的道理。
希望我能幫助你解疑釋惑。
G. 數學中的豎式是誰發明的
豎式的沿革沒有典籍記載
我國古代數學以計算為主,取得了十分輝煌的成就。其中十進位值制記數法、籌算和珠算在數學發展中所起的作用和顯示出來的優越性,在世界數學史上也是值得稱道的。
十進位值制記數法曾經被馬克思(1818—1883)稱為「最妙的發明之一」①。
從有文字記載開始,我國的記數法就遵循十進制。殷代的甲骨文和西周的鍾鼎文都是用一、二、三、四、五、六、七、八、九、十、百、千、萬等字的合文來記十萬以內的自然數的。例如二千六百五十六寫作■■■■(甲骨文),六百五十九寫作■■■■■(鍾鼎文)。這種記數法含有明顯的位值制意義,實際上,只要把「千」、「百」、「十」和「又」的字樣取消,便和位值制記數法基本一樣了。
春秋戰國時期是我國從奴隸制轉變到封建制的時期,生產的迅速發展和科學技術的進步提出了大量比較復雜的數字計算問題。為了適應這種需要,勞動人民創造了一種十分重要的計算方法——籌算。我們認為籌算是完成於春秋戰國時期,理由是:第一,春秋戰國時期,農業、商業和天文歷法方面有了飛躍的發展,在這些領域中,出現了大量比以前復雜得多的計算問題。由於井田制的廢除,各種形狀的私田相繼出現,並相應實行按畝收稅的制度,這就需要計算復雜形狀的土地面積和產量;商業貿易的增加和貨幣的廣泛使用,提出了大量比例換算的問題;適應當時農業需要的厲法,要計算多位數的乘法和除法。為了解決這些復雜的計算問題,才創造出計算工具算籌和計算方法籌算。第二,現有的文獻和文物也證明籌算出現在春秋戰國時期。例如「算」和「籌」二字出現在春秋戰國時期的著作(如《儀禮》、《孫子》、《老子》、《法經》、《管子》、《荀子》等)中,甲骨文和鍾鼎文中到現在仍沒有見到這兩個字。一二三以外的籌算數字最早出現在戰國時期的貨幣(刀、布)上。《老子》提到:「善計者不用籌策」,可見這時籌算已經比較普遍了。因此我們說籌算是完成於春秋戰國時期。這並不否認在春秋戰國時期以前就有簡單的算籌記數和簡單的四則運算。
關於算籌形狀和大小,最早見於《漢書·律歷志》。根據記載,算籌是直徑一分(合○·二三厘米)、長六寸(合一三·八六厘米)的圓形竹棍,以二百七十一根為一「握」。南北朝時期公元六世紀《數術記遺》和《隋書·律歷志》記載的算籌,長度縮短,並且把圓的改成方的或扁的。這種改變是容易理解的:長度縮短是為了縮小布算所佔的面積,以適應更加復雜的計算;圓的改成方的或扁的是為了避免圓形算籌容易滾動而造成錯誤。根據文獻的記載,算籌除竹籌外,還有木籌、鐵籌、玉籌和牙籌,還有盛裝算籌的算袋和運算元筒。唐代曾經規定,文武官員必須攜帶算袋。1971年八月中旬,在陝西寶雞市千陽縣第一次發現西漢宣帝時期(公元前73年到前49年)的骨制算籌三十多根,大小長短和《漢書·律歷志》的記載基本相同。1975年上半年在湖北江陵鳳凰山一六八號漢墓又發現西漢文帝時期(公元前179年到前157年)的竹製算籌一束,長度比千陽縣發現的算籌稍大一點。1980年九月,在石家莊市又發現東漢初期(公元一世紀)的骨制算籌約三十根,長度和形狀同《隋書·律歷志》的記載相近,這說明算籌長度和形狀的改變早在東漢初期已經開始。算籌的出土,為研究我國數學發展史提供了可貴的實物資料。
從而進行加、減、乘、除、開方以及其他的代數計算。
籌算一出現,就嚴格遵循十進位值制記數法。九以上的數就進一位,同一個數字放在百位就是幾百,放在萬位就是幾萬。這種記數法,除所用的數字和現今通用的印度-阿拉伯數字形式不同外,和現在的記數法實質是一樣的。籌算是把算籌一面擺成數字,一面進行計算,它的運算程序和現今珠算的運算程序基本相似。記述籌算記數法和運演算法則的著作有《孫子算經》(公元四世紀)、《夏侯陽算經》(公元五世紀)和《數術記遺》(公元六世紀)。負數出現後,算籌分成紅黑兩種,紅籌表示正數,黑籌表示負數。算籌還可以表示各種代數式,進行各種代數運算,方法和現今的分離系數法相似。我國古代在數字計算和代數學方面取得的輝煌成就,和籌算有密切的關系。例如祖沖之的圓周率准確到小數第六位,需要計算正一萬二千二百八十八邊形的邊長,把一個九位數進行二十二次開平方(加、減、乘、除步驟除外),如果沒有十進位值制的計算方法,那就會困難得多了。
古巴比侖的記數法雖然有位值制的意義,但是它是六十進的,計算比較繁瑣。古埃及的數字從一到十隻有兩個數字元號,從一百到一千萬有四個數字元號,而且是象形的,例如用一個鳥表示十萬。文化比較發達的古希臘,由於看重幾何,輕視計算,記數方法十分落後,用全部希臘字母表示一到一
民創造的,但是印度在公元三世紀以前使用的記數法是希臘式和羅馬式兩種,都不是位值制,真正使用十進位值制記數法出現在公元六世紀末。由此可見,我國古代的十進位值制記數法和籌算,在世界數學史上應該佔有重要的地位。
籌算在我國古代用了大約兩千年,在生產和科學技術以至人民生活中,發揮了重大的作用。但是它的缺點也是十分明顯的:首先,在室外拿著一大把算籌進行計算就很不方便;其次,計算數字的位數越多,所需要的面積越大,受環境和條件的限制;此外,當計算速度加快的時候,很容易由於算籌擺弄不正而造成錯誤。隨著社會的發展,計算技術要求越來越高,籌算需要改革,這是勢在必行的。這個改革從中唐以後的商業實用算術開始,經宋元出現大量的計算歌訣,到元末明初珠算的普遍應用,歷時七百多年。《新唐書》和《宋史·藝文志》記載了這個時期出現的大量著作。由於封建統治階級對民間數學十分輕視,以致這些著作的絕大部分已經失傳。從遺留下來的著作中可以看出,籌算的改革是從籌算的簡化開始而不是從工具改革開始的,這個改革最後導致珠算的出現。
珠算是由籌算演變而來的,這是十分清楚的。籌算數字中,上面一根籌當五,下面一根籌當一,珠算盤中的上一珠也是當五,下一珠也是當一;由於籌算在乘、除法中出現某位數字等於十或多於十的情形(例如26532÷8,
採用上二珠下五珠的形式。其次,我們可以證明,從楊輝、朱世傑開始到元末丁巨、何平子、賈亨止的除「起一」法外的全部現今通用的珠算歌訣,是為籌算而設的。楊輝的《乘除通變本末》(公元1274年)和朱世傑的《算學啟蒙》(公元1299年)已經有相當完備的歌訣,但是楊輝在《乘除通變本末》中說:「下算不出『橫』『直』」,其中「橫」「直」顯然是指算籌的縱橫排列;朱世傑在《算學啟蒙》中提到「知算縱橫數目真」,也是這個意思。《丁巨演算法》(公元1355年)、何平子的《詳明演算法》(公元1373年)、賈亨的《演算法全能》(約公元1373年)也有相當完備的歸除歌訣,但是都沒有提到珠算,而《詳明演算法》還有許多籌算算草。歌訣出現後,籌算原來存在的缺點就更突出了,歌訣的快捷和擺弄算籌的遲緩存在矛盾。為了得心應手,勞動人民便創造出更加先進的計算工具——珠算盤。
現存文獻中最早提到珠算盤的是明初的《對相四言》。明代中期公元十五世紀中葉《魯班木經》中有製造珠算盤的規格:「算盤式:一尺二寸長,四寸二分大。框六分厚,九分大,……線上二子,一寸一分;線下五子,三寸一分。長短大小,看子而做。」把上二子和下五子隔開的不是木製的橫梁,而是一條線。比較詳細地說明珠算用法的現存著作有徐心魯的《盤珠演算法》(公元1573年)、柯尚遷的《數學通軌》(公元1578年)、朱載堉(1536—1611)的《算學新說》(公元1584年)、程大位的《直指演算法統宗》(公元1592年)等,以程大位的著作流傳最廣。
值得指出的是,在元代中葉和元末的文學、戲劇作品中有提到珠算的。例如元世祖至元十六年(公元1279年)劉因在他的《靜修先生文集》中有一首關於算盤的五言絕詩;陶宗儀在他的《輟耕錄》中把婢僕貶作算盤珠,要撥才動;《元曲選》「龐居士誤放來生債」提到「去那算盤里撥了我的歲數」,等等。文學、戲劇中用算盤珠作比喻,說明珠算盤已經比較流行,也說明它是比較時新的東西。因此可以認為,珠算出現在元代中葉,元末明初已經普遍應用了。
有的外國學者認為我國的珠算出現在漢代,他們的根據是漢徐岳著、北周甄鸞注的《數術記遺》已經明確提到珠算。我國數學家、數學史家錢寶琮(1892—1974)曾經考證過,《數術記遺》是甄鸞依託偽造而自己注釋的書。在北周時,乘、除運算都在上、中、下三層進行,又沒有簡化乘、除法的歌訣,因此甄鸞注釋的珠算,充其量不過是一種記數工具或者只能作加減法的簡單算盤,和後來出現的珠算是完全不同的。
珠算還傳到朝鮮、日本等國,對這些國家的計算技術的發展曾經起過一定的作用。日本人在十七世紀中葉,在中國算盤的基礎上,改成樑上一珠、珠作棱形的日本算盤
H. 乘法是誰發明的
九九乘法口訣最早是由中國人發明,在諸子百家的《荀子》、《管子》、《淮南子》等古籍中,都能找到「三九二十七」、「六八四十八」、「四八三十二」等口訣。
但是古代的乘法口訣和現代的有所不同,古代的九九乘法口訣又稱「小九九」,它的排列順序與現在的正好相反,是從「九九八十一」開始,到「二二得四」結束,因為乘法口訣的開頭的。
兩個字是「九九」,所以人們簡稱它為「九九」。大約到了十三四世紀的時候,數學家們認為「九九八十一」到「二二得四」不符合數學上的從小到大的排列順序,所以才改過來變為「二二得四」到「九九八十一」,另外又加上了「一一得一」這一行,一直沿用到現在。
乘法也可以被視為計算排列在矩形(整數)中的對象或查找其邊長度給定的矩形的區域。 矩形的區域不取決於首先測量哪一側,這說明了交換屬性。 兩種測量的產物是一種新型的測量,例如,將矩形的兩邊的長度相乘給出其面積,這是尺寸分析的主題。
(8)豎式計算誰發明的擴展閱讀:
古巴比倫數學使用60進制,考古發現的一塊古巴比倫泥板證實了這一點。這塊泥板上有一個正方形,對角線上有四個數字1, 24, 51, 10。
最初發現這塊泥板時人們並不知道這是什麼意思,後來某牛人驚訝地發現,如果把這些數字當作60進制的三位小數的話,得到的正好是單位正方形對角線長度的近似值:1 + 24/60 + 51/60^2 + 10/60^3 = 1.41421296296... 這說明古巴比倫已經掌握了勾股定理。
60進制的使用為古巴比倫數學的乘法運算發展帶來了很大的障礙,因為如果你要背59-59乘法口訣表的話,至少也得背1000多項,等你把它背完了後我期末論文估計都已經全寫完了。另一項考古發現告訴了我們古巴比倫數學的乘法運算如何避免使用乘法表。
考古學家們發現一些泥板上刻有60以內的平方表,利用公式ab = [(a+b)^2 - a^2 - b^2]/2 可以迅速查表得到ab的值。
另一個公式則是ab = [(a+b)^2 - (a-b)^2]/4,這說明兩個數相乘只需取它們的和平方與差平方的差,再兩次取半即可。平方數的頻繁使用很可能加速了古巴比倫人發現勾股定理的過程。
I. 乘除法豎式是哪國何時由誰創造的
豎式的沿革沒有典籍記載 我國古代數學以計算為主,取得了十分輝煌的成就.其中十進位值制記數法、籌算和珠算在數學發展中所起的作用和顯示出來的優越性,在世界數學史上也是值得稱道的. 十進位值制記數法曾經被馬克思(1818—1883)稱為「最妙的發明之一」①. 從有文字記載開始,我國的記數法就遵循十進制.殷代的甲骨文和西周的鍾鼎文都是用一、二、三、四、五、六、七、八、九、十、百、千、萬等字的合文來記十萬以內的自然數的.例如二千六百五十六寫作■■■■(甲骨文),六百五十九寫作■■■■■(鍾鼎文).這種記數法含有明顯的位值制意義,實際上,只要把「千」、「百」、「十」和「又」的字樣取消,便和位值制記數法基本一樣了. 春秋戰國時期是我國從奴隸制轉變到封建制的時期,生產的迅速發展和科學技術的進步提出了大量比較復雜的數字計算問題.為了適應這種需要,勞動人民創造了一種十分重要的計算方法——籌算.我們認為籌算是完成於春秋戰國時期,理由是:第一,春秋戰國時期,農業、商業和天文歷法方面有了飛躍的發展,在這些領域中,出現了大量比以前復雜得多的計算問題.由於井田制的廢除,各種形狀的私田相繼出現,並相應實行按畝收稅的制度,這就需要計算復雜形狀的土地面積和產量;商業貿易的增加和貨幣的廣泛使用,提出了大量比例換算的問題;適應當時農業需要的厲法,要計算多位數的乘法和除法.為了解決這些復雜的計算問題,才創造出計算工具算籌和計算方法籌算.第二,現有的文獻和文物也證明籌算出現在春秋戰國時期.例如「算」和「籌」二字出現在春秋戰國時期的著作(如《儀禮》、《孫子》、《老子》、《法經》、《管子》、《荀子》等)中,甲骨文和鍾鼎文中到現在仍沒有見到這兩個字.一二三以外的籌算數字最早出現在戰國時期的貨幣(刀、布)上.《老子》提到:「善計者不用籌策」,可見這時籌算已經比較普遍了.因此我們說籌算是完成於春秋戰國時期.這並不否認在春秋戰國時期以前就有簡單的算籌記數和簡單的四則運算. 關於算籌形狀和大小,最早見於《漢書·律歷志》.根據記載,算籌是直徑一分(合○·二三厘米)、長六寸(合一三·八六厘米)的圓形竹棍,以二百七十一根為一「握」.南北朝時期公元六世紀《數術記遺》和《隋書·律歷志》記載的算籌,長度縮短,並且把圓的改成方的或扁的.這種改變是容易理解的:長度縮短是為了縮小布算所佔的面積,以適應更加復雜的計算;圓的改成方的或扁的是為了避免圓形算籌容易滾動而造成錯誤.根據文獻的記載,算籌除竹籌外,還有木籌、鐵籌、玉籌和牙籌,還有盛裝算籌的算袋和運算元筒.唐代曾經規定,文武官員必須攜帶算袋.1971年八月中旬,在陝西寶雞市千陽縣第一次發現西漢宣帝時期(公元前73年到前49年)的骨制算籌三十多根,大小長短和《漢書·律歷志》的記載基本相同.1975年上半年在湖北江陵鳳凰山一六八號漢墓又發現西漢文帝時期(公元前179年到前157年)的竹製算籌一束,長度比千陽縣發現的算籌稍大一點.1980年九月,在石家莊市又發現東漢初期(公元一世紀)的骨制算籌約三十根,長度和形狀同《隋書·律歷志》的記載相近,這說明算籌長度和形狀的改變早在東漢初期已經開始.算籌的出土,為研究我國數學發展史提供了可貴的實物資料. 從而進行加、減、乘、除、開方以及其他的代數計算. 籌算一出現,就嚴格遵循十進位值制記數法.九以上的數就進一位,同一個數字放在百位就是幾百,放在萬位就是幾萬.這種記數法,除所用的數字和現今通用的印度-阿拉伯數字形式不同外,和現在的記數法實質是一樣的.籌算是把算籌一面擺成數字,一面進行計算,它的運算程序和現今珠算的運算程序基本相似.記述籌算記數法和運演算法則的著作有《孫子算經》(公元四世紀)、《夏侯陽算經》(公元五世紀)和《數術記遺》(公元六世紀).負數出現後,算籌分成紅黑兩種,紅籌表示正數,黑籌表示負數.算籌還可以表示各種代數式,進行各種代數運算,方法和現今的分離系數法相似.我國古代在數字計算和代數學方面取得的輝煌成就,和籌算有密切的關系.例如祖沖之的圓周率准確到小數第六位,需要計算正一萬二千二百八十八邊形的邊長,把一個九位數進行二十二次開平方(加、減、乘、除步驟除外),如果沒有十進位值制的計算方法,那就會困難得多了. 古巴比侖的記數法雖然有位值制的意義,但是它是六十進的,計算比較繁瑣.古埃及的數字從一到十隻有兩個數字元號,從一百到一千萬有四個數字元號,而且是象形的,例如用一個鳥表示十萬.文化比較發達的古希臘,由於看重幾何,輕視計算,記數方法十分落後,用全部希臘字母表示一到一 民創造的,但是印度在公元三世紀以前使用的記數法是希臘式和羅馬式兩種,都不是位值制,真正使用十進位值制記數法出現在公元六世紀末.由此可見,我國古代的十進位值制記數法和籌算,在世界數學史上應該佔有重要的地位. 籌算在我國古代用了大約兩千年,在生產和科學技術以至人民生活中,發揮了重大的作用.但是它的缺點也是十分明顯的:首先,在室外拿著一大把算籌進行計算就很不方便;其次,計算數字的位數越多,所需要的面積越大,受環境和條件的限制;此外,當計算速度加快的時候,很容易由於算籌擺弄不正而造成錯誤.隨著社會的發展,計算技術要求越來越高,籌算需要改革,這是勢在必行的.這個改革從中唐以後的商業實用算術開始,經宋元出現大量的計算歌訣,到元末明初珠算的普遍應用,歷時七百多年.《新唐書》和《宋史·藝文志》記載了這個時期出現的大量著作.由於封建統治階級對民間數學十分輕視,以致這些著作的絕大部分已經失傳.從遺留下來的著作中可以看出,籌算的改革是從籌算的簡化開始而不是從工具改革開始的,這個改革最後導致珠算的出現. 珠算是由籌算演變而來的,這是十分清楚的.籌算數字中,上面一根籌當五,下面一根籌當一,珠算盤中的上一珠也是當五,下一珠也是當一;由於籌算在乘、除法中出現某位數字等於十或多於十的情形(例如26532÷8, 採用上二珠下五珠的形式.其次,我們可以證明,從楊輝、朱世傑開始到元末丁巨、何平子、賈亨止的除「起一」法外的全部現今通用的珠算歌訣,是為籌算而設的.楊輝的《乘除通變本末》(公元1274年)和朱世傑的《算學啟蒙》(公元1299年)已經有相當完備的歌訣,但是楊輝在《乘除通變本末》中說:「下算不出『橫』『直』」,其中「橫」「直」顯然是指算籌的縱橫排列;朱世傑在《算學啟蒙》中提到「知算縱橫數目真」,也是這個意思.《丁巨演算法》(公元1355年)、何平子的《詳明演算法》(公元1373年)、賈亨的《演算法全能》(約公元1373年)也有相當完備的歸除歌訣,但是都沒有提到珠算,而《詳明演算法》還有許多籌算算草.歌訣出現後,籌算原來存在的缺點就更突出了,歌訣的快捷和擺弄算籌的遲緩存在矛盾.為了得心應手,勞動人民便創造出更加先進的計算工具——珠算盤. 現存文獻中最早提到珠算盤的是明初的《對相四言》.明代中期公元十五世紀中葉《魯班木經》中有製造珠算盤的規格:「算盤式:一尺二寸長,四寸二分大.框六分厚,九分大,……線上二子,一寸一分;線下五子,三寸一分.長短大小,看子而做.」把上二子和下五子隔開的不是木製的橫梁,而是一條線.比較詳細地說明珠算用法的現存著作有徐心魯的《盤珠演算法》(公元1573年)、柯尚遷的《數學通軌》(公元1578年)、朱載堉(1536—1611)的《算學新說》(公元1584年)、程大位的《直指演算法統宗》(公元1592年)等,以程大位的著作流傳最廣. 值得指出的是,在元代中葉和元末的文學、戲劇作品中有提到珠算的.例如元世祖至元十六年(公元1279年)劉因在他的《靜修先生文集》中有一首關於算盤的五言絕詩;陶宗儀在他的《輟耕錄》中把婢僕貶作算盤珠,要撥才動;《元曲選》「龐居士誤放來生債」提到「去那算盤里撥了我的歲數」,等等.文學、戲劇中用算盤珠作比喻,說明珠算盤已經比較流行,也說明它是比較時新的東西.因此可以認為,珠算出現在元代中葉,元末明初已經普遍應用了. 有的外國學者認為我國的珠算出現在漢代,他們的根據是漢徐岳著、北周甄鸞注的《數術記遺》已經明確提到珠算.我國數學家、數學史家錢寶琮(1892—1974)曾經考證過,《數術記遺》是甄鸞依託偽造而自己注釋的書.在北周時,乘、除運算都在上、中、下三層進行,又沒有簡化乘、除法的歌訣,因此甄鸞注釋的珠算,充其量不過是一種記數工具或者只能作加減法的簡單算盤,和後來出現的珠算是完全不同的. 珠算還傳到朝鮮、日本等國,對這些國家的計算技術的發展曾經起過一定的作用.日本人在十七世紀中葉,在中國算盤的基礎上,改成樑上一珠、珠作棱形的日本算盤