① 大數據時代的營銷怎麼做
大數據時代的營銷怎麼做?
大數據時代的營銷怎麼做?各公司在大數據方面出手闊綽。首席營銷官調查網站(The CMO Survey)報道稱,目前大約有5.5%的營銷預算用於營銷分析,這個數字將在未來3年內增加到8.7%。大家的期望值很高,許多公司正試圖弄清楚如何破譯數據,從中獲得卓越的戰略見解。
我非常支持這種獲取和利用數據來推動決策的趨勢。然而,這也是問題所在。隨著數據量的增長,企業的數據利用率越來越低。我首先在2012年2月提出了如下問題:「在你的公司作出決策前,對現有或者索取的營銷分析數據加以利用的項目佔多大比例?」得到的結果是37%,當時我覺得這個比例太低。但當我在2013年8月提出同樣的問題時,比例降至29%。圖1顯示了這個比例在過去18個月里持續下降。
但這個調查結果並非完全出人意料。回顧30年來相關調查的歷史,數據利用率始終偏低,很多種類的營銷信息都是如此,包括營銷調研、廣告調研和現在的社交媒體調研。這種偏低的營銷分析數據利用率妨礙了大數據對利潤的貢獻。
妨礙有多大?有些人可能會說,營銷分析等各種市場情報的最終衡量標準是能否增進企業對客戶的了解。首席營銷官調查網站請頂級營銷人員對他們公司在「獲得和利用對客戶的深入見解」方面的表現打分。滿分為5分,1分是糟糕,2分是尚可,3分是普通,4分是良好,5分是優秀。回顧過往得分,結果顯示仍然處於普通水平(2013年8月為3.4分,2012年2月為3.5分,2009年8月為3.5分)。因此,即使用於營銷分析的花費增多,但我們並未看到對客戶的深入見解有所提高。
企業應該怎麼做?首先,管理人員必須以終為始。上市計劃、創造需求的活動和銷售活動必須包括關於哪些數據應該收集以及如何利用它們的具體說明。當計劃和策略中植入了大數據方案的時候,偏低的利用率可能會上升。
其次,企業必須花錢培訓管理人員,讓他們知道如何利用營銷分析來獲得洞察力、推動決策、實施策略和評估他們已經採取的行動。正是出於這個原因,我們在福庫商學院(Fuqua)教授「市場情報」課程,專注於信息的「使用」而非「創造」。企業必須更加重視市場分析的應用部分。機構和咨詢公司可以提供這類培訓。
第三,企業必須找到和留住那些能夠充分利用市場分析的合適人才。當問及「你的公司在多大程度上擁有能夠充分利用市場分析的合適人才?」時(1分為沒有合適的人才,7分為有合適的人才),僅僅3.4%的受訪者給自己的公司打了7分,56%的人打了低於平均水平的分數。圖2顯示了完整的分數分布情況(平均分為3.4分,標准偏差為1.7分)。
② 大數據是怎麼定義的,大數據包括什麼
大數據無疑是近些年來科技領域的一個重要概念,隨著越來越多的企業開始逐漸參與到大數據產業鏈中,大數據自身的定義也在不斷得到豐富和發展。
要想定義大數據,可以從以下三個方面來進行定義:
第一:大數據重新定義了數據的價值。大數據既代表了技術,同時也代表了一個產業,更代表了一個發展的趨勢。大數據技術指的是圍繞數據價值化的一系列相關技術,包括數據的採集、存儲、安全、分析、呈現等等;大數據產業指的是以大數據技術為基礎的產業生態,大數據的產業生態目前尚未完善,還有較大的發展空間;發展趨勢指的是大數據將成為一個重要的創新領域。
第二:大數據為智能化社會奠定了基礎。人工智慧的發展需要三個基礎,分別是數據、算力和演算法,所以大數據對於人工智慧的發展具有重要的意義。目前在人工智慧領域之所以在應用效果上有較為明顯的改善,一個重要的原因是目前有了大量的數據支撐,這會全面促進演算法的訓練過程和驗證過程,從而提升演算法的應用效果。
第三:大數據促進了社會資源的數據化進程。大數據的發展使得數據產生了更大的價值,這個過程會在很大程度上促進社會資源的數據化進程,而更多的社會資源實現數據化之後,大數據的功能邊界也會得到不斷的拓展,從而帶動一系列基於大數據的創新。
最後,大數據之所以重要,一個重要的原因是大數據開辟了一個新的價值領域,大數據將逐漸成為一種重要的生產材料,甚至可以說大數據將是智能化社會的一種新興能源。
③ 如何用大數據分析創造商業價值
大數據分析是研究大量且多樣的數據集(即大數據)的過程,從而揭示隱藏的模式,未知的相關性,市場趨勢,客戶偏好和其他有用信息,這些信息可幫助公司做出更明智的商業決策。通過專業的分析系統和軟體,大數據分析可以指明商業收益的方向,比如新的機遇,有效的營銷,更好的客戶服務,提高運營效率以及競爭優勢等等。
以下是通過大數據分析將大大受益的十大行業:
1. 銀行和證券
通過網路活動監控和自然語言處理程序,監控金融市場,從而減少欺詐性交易。交易委員會正在使用大數據分析監控股票市場,避免非法交易的發生。
2. 通訊和媒體
同時在多個平台(移動,網路和電視)上實時報道世界各地的事件。媒體的一部分,音樂行業使用大數據關注最新的趨勢,並通過自動調諧軟體創作出流行的曲調。
3. 體育
了解特定地區針對不同活動的收視率模式,並通過分析來監測個人球員和球隊的表現。像板球世界盃,FIFA世界盃和溫布爾頓國際網球錦標賽的體育賽事均有使用大數據分析。
4. 醫療保健
收集公共衛生數據,從而更快地應對個人健康問題,並掌握新病毒株(如埃博拉病毒)在全球傳播的狀態。不同國家衛生部門合並使用大數據分析工具,以便在人口普查後進行數據收集。
5. 教育
針對目前快速發展的各種領域,更新和升級相關文獻。世界各地的大學均使用大數據來檢測和追蹤學生和教師的情況,並通過不同科目的出席率分析學生的興趣喜好。
6. 製造業
通過大數據提高供應鏈管理,提高生產率。製造企業使用這些分析工具,確保以最佳方式分配生產資源,從而獲得最大效益。
7. 保險
通過預測分析處理各種業務,從開發新產品到應對索賠。保險公司使用大數據了解需求最大的政策計劃,並產生更多收益。
8. 消費者貿易
預測和管理人員編制以及庫存需求。消費者貿易公司通過會員制度,記錄會員情況從而發展貿易。
9. 交通運輸
制定更好的路線規劃,交通監控和物流管理。主要是政府為了避免交通堵塞而設立的。
10. 能源
通過智能電表減少電氣泄漏,並幫助用戶管理能源使用情況。負荷調度中心使用大數據分析來監測負荷模式,並根據不同的參數分析能源消耗趨勢之間的差異,並節約能源。
④ 大數據時代怎麼發展
2016年以來,國家政策持續推動大數據產業發展。2016年「十三五規劃」中明確提出實施大數據戰略,把大數據作為基礎性戰略資源,全面實施促進大數據發展行動,加快推動數據資源共享開放和開發應用,助力產業轉型升級和社會治理創新。發改委、工信部及農業部、運輸部等部委先後頒布相關後續政策,推動大數據產業發展。隨著大數據產業的進一步落地,預計未來將有更多部門出台具體政策,推動大數據行業的發展。
未來大數據產業發展的趨勢之一:與雲計算、人工智慧等前沿創新技術深度融合。大數據、雲計算、人工智慧等前沿技術的產生和發展均來自社會生產方式的進步和信息技術產業的發展。而前沿技術的彼此融合將能實現超大規模計算、智能化自動化和海量數據的分析,在短時間內完成復雜度較高、精密度較高的信息處理。
來大數據行業發展趨勢之二:針對製造業的大數據解決方案不斷升級,助力智能製造。製造業產品的全生命周期從市場規劃、設計、製造、銷售、維護等過程都會產生大量的結構化和非結構化數據,形成了製造業大數據。除此以外,製造業大數據還具多源異構、多尺度、不確定、高雜訊等特徵。在《智能製造發展規劃2016-2020》中,明確提出2025年前,推進智能製造實施「兩步走」戰略:「第一步,到2020年,智能製造發展基礎和支撐能力明顯增強,傳統製造業重點領域基本實現數字化製造,有條件、有基礎的重點產業智能轉型取得明顯進展;第二步,到2025年,智能製造支撐體系基本建立,重點產業初步實現智能轉型」。而在大數據細分市場中行業解決方案佔比最高達34.3%,將在智能製造產業發展中起到重要作用。
⑤ 大數據發展必備三個條件
大數據發展必備三個條件
大數據概念的橫空出世,有賴於短短幾年出現的海量數據。據統計,互聯網上的數據每兩年翻一番,而目前世界上90%以上的數據都是最近幾年才產生的。當然,海量數據僅僅是「大數據」概念的一部分,只有具備4個「V」的特徵,大數據的定義才算完整,而價值恰恰是決定大數據未來走向的關鍵。
大數據發展必備三個條件
大數據的發展需要三個必要條件:數據源、數據交易、數據產生價值的過程。近年來,社交網路的興起、物聯網的發展和移動互聯網的普及,誕生了大量有價值的數據源,奠定了大數據發展的基礎。大數據時代到來的重要標志,則是大批專業級「數據買賣商」的出現,以及圍繞數據交易形成的,貫穿於收集、整理、分析、應用整個流程的產業鏈條。大數據發展的核心,則是使用戶從海量的非結構化數據和半結構化數據中獲得了新的價值,數據價值是帶動數據交易的原動力。
IBM、甲骨文、SAP近年紛紛斥巨資收購數據管理和分析公司,在這些互聯網巨頭的帶動下,數據分析技術日漸成熟。2013年6月,愛德華·斯諾登將「棱鏡計劃」公之於眾,「棱鏡門」事件一方面說明大數據技術已經成熟;另一方面也佐證了現在阻礙大數據發展的不是技術,而是數據交易和數據價值。
大數據技術的發展促進了雲計算的落地,雲計算的部署完成又反過來加大了市場對數據創造價值的期待。大數據概念提出之後,市場終於看到了雲計算的獲利方向:各地的一級系統集成商與當地政府合作,建雲數據中心;各大行業巨頭在搭建各自行業的雲平台;IT巨頭想盡辦法申請中國的公有雲牌照。大數據促成了雲計算從概念到落地。藉助於智慧城市概念的普及,雲計算基礎設施已基本准備就緒,一方面完成了大數據應用的硬體基礎;另一方面迫於回收雲計算投資的壓力,市場急需應用部署,大數據恰如雪中送炭,被市場寄予厚望。
現在,問題的核心指向了「數據如何創造價值?」
整合與開放是基石
大數據服務創業公司Connotate對800多名商業和IT主管進行了調查。結果顯示,60%受調查者稱:「目前就說這些大數據投資項目肯定能夠帶來良好回報尚為時過早。」之所以如此,是由於當前大數據缺乏必需的開放性:數據掌握在不同的部門和企業手中,而這些部門和企業並不願意分享數據。大數據是通過研究數據的相關性來發現客觀規律,這依賴於數據的真實性和廣泛性,數據如何做到共享和開放,這是當前大數據發展的軟肋和需要解決的大問題。
2012年美國大選,奧巴馬因數據整合而受益。在奧巴馬的競選團隊中有一個神秘的數據挖掘團隊,他們通過對海量數據進行挖掘幫助奧巴馬籌集到10億美元資金;他們通過數據挖掘使競選廣告投放效率提升了14%;他們通過製作「搖擺州」選民的詳細模型,每晚實施6.6萬次模擬選舉,推算奧巴馬在「搖擺州」的勝率,並以此來指導資源分配。奧巴馬競選團隊相比羅姆尼競選團隊最有優勢的地方:對大數據的整合。奧巴馬的數據挖掘團隊也意識到這個全世界共同的問題:數據分散在過多的資料庫中。因此,在前18個月,奧巴馬競選團隊就創建了一個單一的龐大數據系統,可以將來自民意調查者、捐資者、現場工作人員、消費者資料庫、社交媒體,以及「搖擺州」主要的民主黨投票人的信息整合在一起,不僅能告訴競選團隊如何發現選民並獲得他們的注意,還幫助數據處理團隊預測哪些類型的人有可能被某種特定的事情所說服。正如競選總指揮吉姆·梅西納所說,在整個競選活中,沒有數據做支撐的假設很少存在。
2012年3月,美國奧巴馬政府宣布投資2億美元啟動「大數據研究和發展計劃」,將「大數據研究」上升為國家意志。一個國家擁有數據的規模和運用數據的能力將成為綜合國力的重要組成部分。國內智慧城市建設目標之一就是實現數據的集中共享。
合作共贏的商業模式
隨著雲計算、大數據技術和相關商業環境的不斷成熟,越來越多的「軟體開發者」正在利用跨行業的大數據平台,打造創新價值的大數據應用,而且這一門檻正在不斷降低。因為首先,數據擁有者能夠以微乎其微的成本獲取額外的收入,提高利潤水平;其次,大數據設備廠商需要應用來吸引消費者購買設備,發展合作共贏的夥伴關系勢必比單純銷售設備要有利可圖,一些具有遠見的廠商已經開始通過提供資金、技術支持、入股等方式來扶持這些「軟體開發者」;第三,行業細分市場的數據分析應用需求在不斷加大,對於整個大數據產業鏈來說,創新型的行業數據應用開發者必將是未來整個大數據產業鏈中最為活躍的部分。
未來,有三種企業將在」大數據產業鏈「中處於重要地位:掌握海量有效數據的企業,有著強大數據分析能力的企業,以及創新的「軟體開發者」。社交網路、移動互聯網、信息化企業、電信運營商都是海量數據的製造者,Facebook公司手中掌握著8.5億用戶,淘寶注冊用戶超過3.7億,騰訊的微信用戶突破3億,這些龐大用戶群所提供的數據,正在等待時機釋放出巨大商業能量。可以預測,在不久的將來,Facebook、騰訊、電信運營商等海量數據持有者或者自我延伸成為數據分析提供商,或者與IBM、ZTE等企業密切對接成為上下游合作企業,大數據產業鏈將在某個爆發時點到來之際,以令人驚訝的速度成長壯大。
警惕大數據的危害
大數據時代,傳統的隨機抽樣被「所有數據的匯攏」所取代,人們的思維決斷模式,已可直接根據「是什麼」來下結論,由於這樣的結論剔除了個人情緒、心理動機、抽樣精確性等因素的干擾,因此將更精確、更有預見性。不過,由於大數據過於依靠數據的匯集,一旦數據本身有問題,就很可能出現「災難性大數據」,即因為數據本身的問題,而導致錯誤的預測和決策。
大數據的理論是「在稻草堆里找一根針」,而如果「所有稻草看上去都挺像那根針」呢?過多但無法辨析真偽和價值的信息和過少的信息一樣,對於需要作出瞬間判斷、一旦判斷出錯就很可能造成嚴重後果的情況而言,同樣是一種危害。「大數據」理論是建立在「海量數據都是事實」的基礎上,而如果數據提供者造假呢?這在大數據時代變得更有害,因為人們無法控制數據提供者和搜集者本人的偏見。擁有最完善資料庫、最先接受「大數據」理念的華爾街投行和歐美大評級機構,卻每每在重大問題上判斷出錯,這本身就揭示了「大數據」的局限性。
不僅如此,大數據時代造就了一個資料庫無所不在的世界,數據監管部門面臨前所未有的壓力和責任:如何避免數據泄露對國家利益、公眾利益、個人隱私造成傷害?如何避免信息不對等,對困難群體的利益構成傷害?在有效控制風險之前,也許還是讓「大數據」繼續待在籠子里更好一些。
大數據的經濟價值已經被人們認可,大數據的技術也已經逐漸成熟,一旦完成數據的整合和監管,大數據爆發的時代即將到來。我們現在要做的,就是選好自己的方向,為迎接大數據的到來,提前做好准備。
⑥ 如何利用大數據進行用戶需求分析
1.可視化分析
大數據分析的使用者有大數據分析專家,同時還有普通用戶,但是他們二者對於大數據分析最基本的要求就是可視化分析,因為可視化分析能夠直觀的呈現大數據特點,同時能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了。
2. 數據挖掘演算法
大數據分析的理論核心就是數據挖掘演算法,各種數據挖掘的演算法基於不同的數據類型和格式才能更加科學的呈現出數據本身具備的特點,也正是因為這些被全世界統
計
學家所公認的各種統計方法(可以稱之為真理)才能深入數據內部,挖掘出公認的價值。另外一個方面也是因為有這些數據挖掘的演算法才能更快速的處理大數據,如
果一個演算法得花上好幾年才能得出結論,那大數據的價值也就無從說起了。
3. 預測性分析
大數據分析最終要的應用領域之一就是預測性分析,從大數據中挖掘出特點,通過科學的建立模型,之後便可以通過模型帶入新的數據,從而預測未來的數據。
4. 語義引擎
非結構化數據的多元化給數據分析帶來新的挑戰,我們需要一套工具系統的去分析,提煉數據。語義引擎需要設計到有足夠的人工智慧以足以從數據中主動地提取信息。
5.數據質量和數據管理。 大數據分析離不開數據質量和數據管理,高質量的數據和有效的數據管理,無論是在學術研究還是在商業應用領域,都能夠保證分析結果的真實和有價值。
大數據分析的基礎就是以上五個方面,當然更加深入大數據分析的話,還有很多很多更加有特點的、更加深入的、更加專業的大數據分析方法。
大數據的技術
數據採集: ETL工具負責將分布的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。
數據存取: 關系資料庫、NOSQL、SQL等。
基礎架構: 雲存儲、分布式文件存儲等。
數
據處理: 自然語言處理(NLP,Natural Language
Processing)是研究人與計算機交互的語言問題的一門學科。處理自然語言的關鍵是要讓計算機地理解地自然語言,所以自然語言處理又叫做自然語言理
解也稱為計算語言學。一方面它是語言信息處理的一個分支,另一方面它是人工智慧的核心課題之一。
統計分析:
假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、 方差分析 、
卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、
因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。
數
據挖掘: 分類
(Classification)、估計(Estimation)、預測(Prediction)、相關性分組或關聯規則(Affinity
grouping or association rules)、聚類(Clustering)、描述和可視化、Description and
Visualization)、復雜數據類型挖掘(Text, Web ,圖形圖像,視頻,音頻等)
模型預測 :預測模型、機器學習、建模模擬。
結果呈現: 雲計算、標簽雲、關系圖等。
大數據的處理
1. 大數據處理之一:採集
大
數據的採集是指利用多個資料庫來接收發自客戶端(Web、App或者感測器形式等)的
數據,並且用戶可以通過這些資料庫來進行簡單的查詢和處理工作。比如,電商會使用傳統的關系型資料庫MySQL和Oracle等來存儲每一筆事務數據,除
此之外,Redis和MongoDB這樣的NoSQL資料庫也常用於數據的採集。
在大數據的採集過程中,其主要特點和挑戰是並發數高,因為同時
有可能會有成千上萬的用戶
來進行訪問和操作,比如火車票售票網站和淘寶,它們並發的訪問量在峰值時達到上百萬,所以需要在採集端部署大量資料庫才能支撐。並且如何在這些資料庫之間
進行負載均衡和分片的確是需要深入的思考和設計。
2. 大數據處理之二:導入/預處理
雖然採集端本身會有很多資料庫,但是如果要對這些
海量數據進行有效的分析,還是應該將這
些來自前端的數據導入到一個集中的大型分布式資料庫,或者分布式存儲集群,並且可以在導入基礎上做一些簡單的清洗和預處理工作。也有一些用戶會在導入時使
用來自Twitter的Storm來對數據進行流式計算,來滿足部分業務的實時計算需求。
導入與預處理過程的特點和挑戰主要是導入的數據量大,每秒鍾的導入量經常會達到百兆,甚至千兆級別。
3. 大數據處理之三:統計/分析
統
計與分析主要利用分布式資料庫,或者分布式計算集群來對存儲於其內的海量數據進行普通
的分析和分類匯總等,以滿足大多數常見的分析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及基於
MySQL的列式存儲Infobright等,而一些批處理,或者基於半結構化數據的需求可以使用Hadoop。
統計與分析這部分的主要特點和挑戰是分析涉及的數據量大,其對系統資源,特別是I/O會有極大的佔用。
4. 大數據處理之四:挖掘
與
前面統計和分析過程不同的是,數據挖掘一般沒有什麼預先設定好的主題,主要是在現有數
據上面進行基於各種演算法的計算,從而起到預測(Predict)的效果,從而實現一些高級別數據分析的需求。比較典型演算法有用於聚類的Kmeans、用於
統計學習的SVM和用於分類的NaiveBayes,主要使用的工具有Hadoop的Mahout等。該過程的特點和挑戰主要是用於挖掘的演算法很復雜,並
且計算涉及的數據量和計算量都很大,常用數據挖掘演算法都以單線程為主。
整個大數據處理的普遍流程至少應該滿足這四個方面的步驟,才能算得上是一個比較完整的大數據處理。
⑦ 如何利用大數據來創造價值
深圳遠標為你解答
大數據如何創造價值
這里列舉5個大數據廣泛適用,能創造質變性的價值並影響機構的設計、組織和管理的方面。
首先,大數據能提高透明度。僅僅讓相關的利益共享者盡可能簡單及時地使用大數據就可以創造極大的價值。例如在公共行業,讓原本孤立的部門間輕易地共享數據,就能明顯減少搜索和處理時間。在製造業中,整合研發、工程和生產單位數據以實現並行工程,就能顯著縮短上實時間並提高質量。
其次,讓發現需求、尋求變化和提高性能的實驗成為可能。當組織機構創建和儲存更多數字形式的業務數據時,他們可以收集更多准確和細節的性能參數(實時或近乎實時),從產品庫存到人員病假等任何事物。
再次能針對細分人口採取定製行動。大數據允許組織機構高度細分市場,專門定製產品和提供精準服務來滿足各種需求。這種方式在市場營銷和風險管理領域眾所周知,但在其他行業可能是革命性的——比如在形成一種同等對待所有群眾的道德觀的公共行業。然而即使是已經使用市場細分多年的消費品和服務公司,也開始部署復雜的大數據技術來瞄準促銷和廣告推廣。
還能用自動化演算法取代或支持人類決策。復雜而巧妙的分析可以大幅度改善決策、降低風險和發覺有價值的觀點。對組織來說,像這樣的分析應用,從稅務機構能夠使用自動化風險引擎標記需進一步檢查的候選人,跨越到零售商可以利用演算法優化類似於自動庫存微調和專櫃店與在線銷售實時價格響應的決策過程。在某些情況下,決策不一定是自動的,但通過使用大數據技術和科技,而非小樣本的個人處理和理解電子表格來分析海量、完整的數據會增強決策。決策也許會變得不同,但一些組織已經著手通過分析來自顧客、員工,甚至嵌入在產品內的感測器中的完整數據來決策。
最後,大數據有助於革新商業模式、產品和服務。大數據能夠讓公司創造新產品和服務,強化現存功能,並創建全新的商業模式。製造業正在運用來自實際產品使用的數據,來改善下一代產品的發展並建立創新型售後服務。從導航到基於人們駕駛汽車的位置和方式的財險定價,實時定位數據的出現已經創造了一個基於定位服務的全新篇章。
⑧ 如何進行大數據營銷
可穿戴的大數據
看看可穿戴技術,會認為這是便捷的下一步發展。但對於現代的企業主來講,這是大數據成就的一個典型的例子。從一個智能手錶收集的數據可以允許企業不僅知道你的習慣和你頻繁去的地方,還有哪些特性更吸引你以及不怎麼使用,這些都是他們可以用來分析的數據,來提高你的總體體驗,還可以大膽預測哪些趨勢和品味可以引領你,這樣他們就可以在一個不相關的領域提供最好的服務。企業提供自己的品牌的可穿戴產品或更簡單的設計不僅在可穿戴式產品的炒作,還可以充分和創造性的利用大數據的提供信息。
不管是大方向還是小方面,年輕的企業家都正在調整大數據運行的方式,以及大數據收集和使用的方法。隨著如雲端服務這樣的技術的出現來幫助其前進與發展,可以公正地說,大數據的使用是越來越有創造力。
⑨ 大數據可以通過以下哪些方式為企業創造價值
knowlesys輿情認為:
大數據能夠幫助企業預測經濟形勢、把握市場態勢、了解消費需求、提高研發效率,不僅具有巨大的潛在商業價值,而且為企業提升競爭力提供了新思路。企業怎樣利用大數據提升競爭力?這里從企業決策、成本控制、服務體系、產品研發四個方面加以簡要討論。
企業決策大數據化。現代企業大都具備決策支持系統,以輔助決策。但現行的決策支持系統僅搜集部分重點數據,數據量小、數據面窄。企業決策大數據化的基礎是企業信息數字化,重點是數據的整理分析。首先,企業需要進行信息數字化採集系統的更新升級。按各決策層級的功能建立數據採集系統,以橫向、縱向、實時三維模式廣泛採集數據。其次,企業需要推進決策權力分散化、前端化、自動化。對多維度的數據進行提煉整合,在人為影響起主要作用的頂層,提高決策指標信息含量和科學性;在人為影響起次要作用的底層,推進決策指標量化,完善決策支持系統和決策機制。大數據決策機制讓數據說話,可以減少人為干擾因素,提高決策精準度。
成本控制大數據化。目前,很多企業在采購、物流、儲存、生產、銷售等環節引入了成本控制系統,但系統間融合度較低。企業可對現有成本控制系統進行改造升級,打造大數據綜合成本控制系統。其一,在成本控制的全過程採集數據,以求最大限度地描述事物,實現信息數字化、數據大量化。其二,推進成本控制標准、控制機理系統化。量化指標,實現成本控制自動化,減少人為因素干擾;細化指標,以獲取更精確的數據。其三,構建綜合成本控制系統,將成本控制所涉及的從原材料采購到產品生產、運輸、儲存、銷售等環節有機結合起來,形成一個綜合評價體系,為成本控制提供可靠依據。成本控制大數據化以預先控制為主、過程式控制制為中、產後控制為輔的方式,可以最大限度降低企業運營成本。
服務體系大數據化。品牌和服務是企業的核心競爭力,服務體系直接影響企業的生存發展。優化服務體系的重點是健全溝通機制、聯絡機制和反饋機制,利用大數據優化服務體系的關鍵是找到服務體系中存在的問題。首先,加強數據收集,對消費者反饋的信息進行分類分析,找到服務體系的問題,然後對症下葯,建立高效服務機制,提高服務效率。其次,將服務方案移到線上,打造自動化服務系統。快速分析、比對消費者服務需求信息,比對成功則自動進入服務程序,實現快速處理;比對失敗則轉入人工服務系統,對新服務需求進行研究處理,並快速將新服務機制添加至系統,優化服務系統。服務體系大數據化,可以實現服務體系的高度自動化,最大程度提高服務質量和效率。
產品研發大數據化。產品研發存在較高風險。大數據能精確分析客戶需求,降低風險,提高研發成功率。產品研發的主要環節是消費需求分析,產品研發大數據化的關鍵環節是數據收集、分類整理和分析利用。企業官網的消費者反饋系統、貼吧、論壇、新聞評價體系等是消費者需求信息的主要來源,應注重從中收集數據。同時,可與論壇、貼吧、新聞評價體系合作構建消費者綜合服務系統,完善消費者信息反饋機制,實現信息收集大量化、全面化、自動化,為產品研發提供信息源。然後,對收集的非結構化數據進行分類整理,以達到精確分析消費需求、縮短產品研發周期、提高研發效率的目的。產品研發大數據化,可以精準分析消費者需求,提高產品研發質量和效率,使企業在競爭中占據優勢。
⑩ 大數據如何給企業創造實際價值
第來一,通過大數據分析,各源行各業都能更快地對變革進行跟蹤,響應全球經濟快速的變化。
第二,在全球金融經濟危機的狀態下,通過數據分析,能夠更好地理解整個經濟危機行為的演變。
第三,能夠更好地滿足大眾和企業服務的需求,而且可以預測市場的變化。
而從大數據利用的方式上,也可產生幾個方面的價值。
首先,大數據的價值密度較低,現在可利用和分析的數據只是冰山一角,數據里的價值遠沒有被發掘出來,所以要利用分析技術去發現它們的潛在價值。
其次,要實現大數據整合創新的價值,通過不同渠道的聚集整合,創造新的數據價值。