㈠ 世界上第一台發電機是如何發明的
1831年的一天晚上,來英國自物理學家法拉第讀到丹麥物理學家奧斯特的一篇文章,說他偶然發現,一段導線用電池通上電流,能使附近的小磁針擺動。這使法拉第喜出望外,立即找來電池、導線、磁針就做起實驗來。
哈哈!導線下面的小磁針還真的轉動起來。高興的法拉第反過來一想:「能不能把磁轉化為電呢?」
後來,他把銅絲纏在圓筒上,把銅線的兩端接在電流計上,把一根磁石插入筒內,哇!在剛插入的一瞬間,電流計的指針竟轉動了。
「成功了!電流產生了!」他高興得竟如同孩子似的跳了起來。
後來,法拉第根據自己的發現,反復實驗終於製成了世界上第一台發電機。
㈡ 世界上的第一台發電機是誰發明的,發明時間是
法拉第 在公元1831年發明的
㈢ 世界上第一發電機是誰發明的
在公元1831年,法拉第將一個封閉電路中的導線通過電磁場,導線轉動有電流流過電線,法拉第因此了解到電和磁場之間有某種緊密的關連,他建造了第一座發電機原型,其中包括了在磁場中迥轉的銅盤,此發電機產生了電力。在此之前,所有的電皆由靜電機器和電池所產生,而這二者均無法產生巨大力量。但是,法拉第的發電機終於改變了一切。 發電機包括一個能在二個或二個以上的磁場間迅速旋轉的電磁鐵,當二個磁場相互交錯,就產生了電,由電線從發電機中導出。電子工程師依發電機線繞的方式和磁鐵的安排,而獲得交流電(AC)或直流電(DC),大部分發電機都是產生交流電,它比直流電更易由傳輸線作長距離的傳送。 學過物理課的人都會記得,英國科學家法拉第於1831 年發現了電磁感應原理。這一在人類社會發展過程中起到重要作用的原理是說:「當磁場的磁力線發生變化時,在其周圍的導線中就會感應產生電流。」 法拉第曾煞費苦心,通過研究和反復實驗,終於發現了這一影響巨大的科學原理,而且他確信,利用此原理肯定能製造出可以實際發電的發電機。 就在法拉第發現電磁感應原理的第二年,受法拉第發現的啟示,法國人皮克希應用電磁感應原理製成了最初的發電機。 皮克希的發電機是在靠近可以旋轉的U 形磁鐵(通過手輪和齒輪使其旋轉)的地方,用兩根鐵芯繞上導線線圈,使其分別對准磁鐵的N 極和S極,並將線圈導線引出。這樣,搖動手輪使磁鐵旋轉時,由於磁力線發生了變化,結果在線圈導線中就產生了電流。 由這種發電機的裝置可以知道,每當磁鐵旋轉半圈時,線圈所對應的磁鐵的磁極就改變一次,從而使電流的方向也跟著改變一次。為了改變這種情況,使電流方向保持不變,皮克希想出了一個巧妙的辦法:在磁鐵的旋轉軸上加裝兩片相互隔開成圓筒狀的金屬片,由線圈引出的兩條線頭,經彈簧片分別與兩個金屬片相接觸。另外,再用兩根導線與兩個金屬片接觸,以引出電流。這個裝置,就叫做整流子,在後來的發電機上仍得到應用。 整流子為什麼能保持電流方向不變呢?這是因為電流從線圈流入整流子,而整流子是和磁鐵一起旋轉的。當磁鐵轉過半圈,線圈中電流方向倒逆過來,整流子也正好轉過半周來而掉轉了方向,因而輸出的電流方向始終是不變的。 皮克希發明的這種發電機在世界上是首創,當然也有其不足之處。需要對它進行改進的地方,一是轉動磁鐵不如轉動線圈更為方便靈活;二是通過整流子可以得到定向的電流,但是電流強弱還是不斷變化的。為改變這種情況,人們採用增加一些磁鐵和線圈數量,並稍微錯開地將變化的電流一起引出的辦法,使輸出電流的強度變化控制在一定的范圍內。 從皮克希發明發電機後的30 多年間,雖然有所改進,並出現了一些新發明,但成果不大,始終未能研製出能輸出像電池那樣大的電流,而且可供實用的發電機。 1867 年,德國發明家韋納·馮·西門子對發電機提出了重大改進。他認為,在發電機上不用磁鐵(即永久磁鐵),而用電磁鐵,這樣可使磁力增強,產生強大的電流。 西門子用電磁鐵代替永久磁鐵發電的原理是,電磁鐵的鐵芯在不通電流時,也還殘存有微弱的磁性。當轉動線圈時,利用這一微弱的剩磁發出電流,再反回給電磁鐵,促使其磁力增強,於是電磁鐵也能產生出強磁性。 接著,西門子著手研究電磁鐵式發電機。很快就製成了這種新型的發電機,它能產生皮克發電機所遠不能相比的強大電流。同時,這種發電機比連接一大堆電池來通電要方便得多,因而它作為實用發電機被廣泛應用起來。 西門子的新型發電機問世後不久,義大利物理學家帕其努悌於1865 年發明了環狀發電機電樞。這種電樞是以在鐵環上繞線圈代替在鐵芯棒上繞制的線圈,從而提高了發電機的效率。 實際上,帕斯努悌早在1860 年就提出了發電機電樞的設想,但未能引起的人們的注意。1865 年,他又在一本雜志上發表了這一獨創性的見解,仍未得到社會的公認。 到了1869 年,比利時學者古拉姆在法國巴黎研究電學時,看到了帕其努悌發表的文章,認為這一發明有其優越性。於是,他就根據帕其努悌的設計方案,兼採納了西門子的電磁鐵式發電機原理進行研製,於1870 年製成了性能優良的發電機。 在帕其努悌的發明中,對發電機的整流子部分進行了重要改進,使發電機發出的電流強度變化極小。而採用帕其努悌設計方案製成的古拉姆式發電機,其發出的電流強度變化也很小。這是古拉姆發電機的優良性能的表現之一。 古拉姆發電機的性能好,所以銷路很廣,他不僅發了財,而且被人們譽為「發電機之父」。 有些人看到古拉姆發明發電機獲得成功,也想對發電機進行改進從而製造出更先進的發電機。在這些人中,就有德國的西門子公司研究發電機的工程師阿特涅。他發明了古拉姆發電機不同的線圈繞線方式,製成了性能良好的發電機。 古拉姆發電機的電樞是將鐵絲繞成環狀,在環與環之間夾上紙進行絕緣,然後將環捆在一起作為鐵芯,在其上面繞上導線線圈,再由線圈的不同部位引出一些導線,接向帶整流子。而阿特涅發電機的電樞,是用許多薄圓鐵板以紙絕緣後重疊起來,製成鐵芯,然後在上面繞上導線線圈。人們把這種方法叫做「鼓卷」,意思是像鼓一樣的形狀。經過這種改進後,發電機無論是外觀或是性能,都比原來有了很大起色。 西門子公司由於阿特涅的這項發明而益發馳名。於是,德國以西門子公司為核心,大力研製各種發電機,從而使電力工業得到了迅速的發展。 隨著發電機的逐漸大型化,轉動發電機的動力也發生了變化。其中以水力作動力更使人們感興趣。這是因為用水力轉動大型發電機較方便,而且不消耗燃料,成本低。因此,西門子公司又投入水力發電的研究工作。 利用水力發電與水力發電不同,前者必須將發電機安裝在水流湍急的地方,也就是水流落差大的地方。這樣,就必須在山中河川的上游發電,然後再輸送到遠方的城市。 為了遠距離輸送電,就要架設很長的輸電線。但是,在輸電線中通過很強的電流時,電線就要發熱,這樣,好不容易發出的電能在送向遠方的途中,卻因為電線發熱而損耗掉了。 為了減少電能在長距離輸送中的發熱損耗,可以採用的辦法有兩個:一是增加電壓的截面積,即將電線加粗,減小電阻;二是提高電壓而減小電流。 前一個措施因需要大量的金屬導線,而且架設很粗的導線有很多困難,因而很難得到採用。比較起來,還是後一個措施有實用價值。然而,對於當時使用的直流電來說,使其電壓提高或降低都是難以實現的。於是,人們只得開始考慮利用電壓很容易改變的交流電。 看來,將直流發電機改為交流電發電機比較容易,主要是取掉整流子就行了。所以,西門子公司的阿特涅便於1873 年發明了交流發電機。此後,對交流發電機的研究工作便盛行起來,從而使這種發電機得到了迅速的發展
㈣ 世界第一台發電機是誰發明的
西門子啊
㈤ 發電機是誰發明的
發電機/發明者:邁克爾·法拉第
邁克爾·法拉第是英國著名化學家戴維的學生和助手,他的發現奠定了電磁學的基礎,是麥克斯韋的先導。1831年10月17日,法拉第首次發現電磁感應現象,並進而得到產生交流電的方法。1831年10月28日法拉第發明了圓盤發電機,是人類創造出的第一個發電機。
由於他在電磁學方面做出了偉大貢獻,被稱為「電學之父」和「交流電之父」。
法拉第最早的化學成果來自於擔任戴維助手的時期。他花了很多心血研究氯氣,1833年.法拉第經過一系列的實驗,發現當把電流作用在氯化鈉的水溶液時,能夠獲得氯氣2NaCl+2H₂O =2NaOH+H₂↑+Cl₂↑,並發現了兩種碳化氯。
法拉第也是第一個學者實驗(雖然較為粗略)觀察氣體擴散,此現象最早由約翰·道爾頓發表,並由湯瑪斯·葛蘭姆及約瑟夫·羅斯密特揭露其重要性。他成功的液化了多種氣體;他研究過不同的鋼合金,為了光學實驗,他製造出多種新型的玻璃。其中一塊樣品後來在歷史上佔有一席之地,因為在一次當法拉第將此玻璃放入磁場中時,他發現了極化光平面受磁力造成偏轉及被磁力排斥。
法拉第也發現了電解定律,以及推廣許多專業用語,如陽極、陰極、電極及離子等,這些詞語大多由威廉·休艾爾發明。他還發現了苯。由於這些成就,很多現代的化學家視法拉第為有史以來最出色的實驗科學家之一。
㈥ 世界上的第一台發電機是誰發明的
1831年,英國物理學家『邁克爾.法拉第』發明了世界上第一台實驗性發電機。1831年法拉第發現當磁鐵穿過一個閉合線路時,線路內就會有電流產生,這個效應叫『電磁感應』。並由此他發明了世界上第一台能產生小電流的發電機。 1834年,法國人『皮克希』應用電磁感應原理製成了手搖式的發電機,其原理是通過轉動永磁體使磁通發生變化而在線圈中產生感應電動勢,並把這種電動勢以直流電壓形式輸出。 1841年,德國人『雅克比』也製成了一台能產生一定大電流的發電機 1866年,德國人『維爾納.馮.西門子』製成世界上第一台真正使用的工業用發電機。 1869年,比利時人『格拉姆』製成了環形電樞,發明了環形電樞發電機。這種發電機是用水力來轉動發電機轉子的,經過反復改進得到了3。2KW的輸出功率。
㈦ 最早的發電機是誰發明的
最早產生於第二次工業革命時期,由德國工程師西門子於1866年製成
㈧ 第一台發電機是誰發明的
第一台發電機是法國人畢克西發明的。
發電機是指將其他形式的能源轉換成電能的機械設備,它由水輪機、汽輪機、柴油機或其他動力機械驅動,將水流,氣流,燃料燃燒或原子核裂變產生的能量轉化為機械能傳給發電機,再由發電機轉換為電能。
發明歷史:
1832年,法國人畢克西發明了手搖式直流發電機,其原理是通過轉動永磁體使磁通發生變化而在線圈中產生感應電動勢,並把這種電動勢以直流電壓形式輸出;
1866年,德國的西門子發明了自勵式直流發電機;
1869年,比利時的格拉姆製成了環形電樞,發明了環形電樞發電機。這種發電機是用水力來轉動發電機轉子的,經過反復改進,於1847年得到了3.2KW的輸出功率;
1882年,美國的戈登製造出了輸出功率447KW,高3米,重22噸的兩相式巨型發電機;
1896年,特斯拉的兩相交流發電機在尼亞拉發電廠開始勞動營運,3750KW,5000V的交流電一直送到40公里外的布法羅市。
發電機在工農業生產、國防、科技及日常生活中有廣泛的用途。發電機的形式很多,但其工作原理都基於電磁感應定律和電磁力定律。因此,其構造的一般原則是:用適當的導磁和導電材料構成互相進行電磁感應的磁路和電路,以產生電磁功率,達到能量轉換的目的。
發電機主要結構:
發電機通常由定子、轉子、端蓋及軸承等部件構成。
定子由定子鐵芯、線包繞組、機座以及固定這些部分的其他結構件組成。
轉子由轉子鐵芯(或磁極、磁扼)繞組、護環、中心環、滑環、風扇及轉軸等部件組成。
由軸承及端蓋將發電機的定子,轉子連接組裝起來,使轉子能在定子中旋轉,做切割磁力線的運動,從而產生感應電勢,通過接線端子引出,接在迴路中,便產生了電流。
發動機使用注意事項:
起動前的准備工作:
1、機房操作人員應遵守安全操作規程,穿工作服和絕緣鞋,機組人員應分工明確;
2、檢查飛輪及發電機部分防欄桿罩是否完好;
3、檢查各變速箱、離合器、調速器、油位、各緊固件等,確認完好,油水溫度不低於20度時,方可起動;
4、將各系統管路閘門設置在「工作」位置;
5、檢查傳動機構的鏈接螺栓,並緊固好;
6、將離合器手柄壓力是否正常,超速保險裝置是否定位;
7、檢查貯氣瓶壓力是否正常,超速保險裝置是否定位;
8、打開打氣泵的排污閥;
9、檢查循環水泵、機油泵、燃油泵是否正常;
10、將勵磁電阻置於最大的電阻位置,並將送電開關斷開。
起動和運行操作:
1、對於停機超過24h的機組,須先打開試動閥,並起動機油泵;
對於停機超過7天的機組,應測量勵磁機及操作電路的絕緣電阻,必須符合要求;
2、起動燃油泵,放出管路中的空氣,觀察電壓是否在規定的范圍內。若正常,方可進行正式起動;
3、察看起動電源的電壓是否符合要求。若電壓正常,按下起動按鈕等柴油發動機正常運行後即松開;
4、當柴油發動機運轉後,觀察機油壓力表的指示值,當升到規定值以上時,停止機油泵,並關閉掃氣泵排污閥,穿好前離合器螺釘;
5、當發電機起動後,即認為發電機及全部電氣設備均已帶電,人體不得接觸帶電部位;
6、發電機起動後,應逐漸提高柴油發動機的轉速,並進行送電前的檢查;
7、逐漸調整柴油發動機的轉速,但在調整時應注意觀察發電機運轉是否正常。正常時,集電環及換向器上的電刷應無跳動、無冒火花現象、無異常響聲;
8、調整發電機輸出的電壓和頻率,其電壓值應穩定並達到380v+-10v,頻率應達到50Hz+-0.5Hz。
網路-發電機
㈨ 是誰發明了發電機,他叫什麼,是幾幾年發明的
1834 德國 雅可比 發明直流發動機
1888 南斯拉夫裔美國 特斯拉 發明了交流電動機
1821年英國科學家法拉第首先證明可以把電力轉變為旋轉運動。最先製成電動機的人,據說是德國的雅可比。他於1834年前後成了一種簡單的裝置:在兩個U型電磁鐵中間,裝一六臂輪,每臂帶兩根棒型磁鐵。通電後,棒型磁鐵與U型磁鐵之間產生相互吸引和排斥作用 ,帶動輪軸轉動。後來,雅可比做了一具大型的裝置。安在小艇上,用320個丹尼爾電池供電,1838年小艇在易北河上首次航行,時速只有2.2公里,與此同時,美國的達文波特也成功地制出了驅動印刷機的電動機,印刷過美國電學期刑《電磁和機械情報》。但這兩種電動機都沒有多大商業價值,用電池作電源,成本太大、不實用。
直到第一台實用直流發動機問世 ,電動機才行了廣泛應用。1870年比利時工程師格拉姆發明了直流發電機,在設計上,直流發電機和電動機很相似。後來,格拉姆證明向直流發動機輸入電流,其轉子會象電動機一樣旋轉。於是,這種格拉姆型電動機大量製造出來。效率也不斷提高。與此同時,德國的西門子接製造更好的發電機,並著手研究由電動機驅動的車輛,於是西門子公司製成了世界電車。1879年,在柏林工業展覽會上,西門子公司不冒煙的電車贏得觀眾的一片喝彩。西門子電機車當時只有3馬力,後來美國發明大王愛迪生試驗的電機車已達12—15馬力。但當時的電動機全是直流電機,只限於驅動電車。
1888年南斯拉夫出生的美國發明家特斯拉發明了交流電動機。它是根據電磁感應原理製成,又稱感應電動機,這種電動機結構簡單,使用交流電,無需整流,無火花,因此被廣泛應用於工業的家庭電器中,交流電動機通常用三相交流供電。
1902年瑞典工程師丹尼爾森首先提出同步電動機構想。
同步電動機工作原理同感應電動機一樣,由定子產生旋轉磁場,便轉子繞組用直流供電,轉速固定不變,不受負載影響。因此同步電動機特別適用於鍾表,電唱機和磁帶錄音機。
直流電動機是直流激磁,工作特性接其激磁繞組的接線方式不同而有區別。串激電動機起動轉矩大,適用於牽引和起重,並激電動機轉速隨負載大小而變動較小,且可以調節,可用為定速或調速之用,復激電動機兼有以上兩種激磁方式發動機的特性。
交流換向器電動機,即轉子具有換向器的交流電動機。因它既可用於交流 又可用於直流,故稱作交直流兩用電動機或通用電動機,多用於家用電器。