導航:首頁 > 創造發明 > 向量誰發明的

向量誰發明的

發布時間:2021-08-17 07:06:33

1. 向量是怎麼發明

大約公元前350年前,古希臘著名學者亞里士多德就知道了力可以表示成向量,兩個力的組合作用可用著名的平行四邊形法則來得到.「向量」一詞來自力學、解析幾何中的有向線段.最先使用有向線段表示向量的是英國大科學家牛頓.

2. 向量是由誰創立的

向量的建立經過了一個漫長的過程,所以不能說具體由哪個人建立起來的.
從數學發展史來看,歷史上很長一段時間,空間的向量結構並未被數學家們所認識,直到19世紀末20世紀初,人們才把空間的性質與向量運算聯系起來,使向量成為具有一套優良運算通性的數學體系。
向量能夠進入數學並得到發展,首先應從復數的幾何表示談起.18世紀末期,挪威測量學家威塞爾首次利用坐標平面上的點來表示復數a+bi,並利用具有幾何意義的復數運算來定義向量的運算.把坐標平面上的點用向量表示出來,並把向量的幾何表示用於研究幾何問題與三角問題.人們逐步接受了復數,也學會了利用復數來表示和研究平面中的向量,向量就這樣平靜地進入了數學。

但復數的利用是受限制的,因為它僅能用於表示平面,若有不在同一平面上的力作用於同一物體,則需要尋找所謂三維「復數」以及相應的運算體系.19世紀中期,英國數學家漢密爾頓發明了四元數(包括數量部分和向量部分),以代表空間的向量.他的工作為向量代數和向量分析的建立奠定了基礎.隨後,電磁理論的發現者,英國的數學物理學家麥克思韋爾把四元數的數量部分和向量部分分開處理,從而創造了大量的向量分析。

三維向量分析的開創,以及同四元數的正式分裂,是英國的居伯斯和海維塞德於19世紀SO年代各自獨立完成的.他們提出,一個向量不過是四元數的向量部分,但不獨立於任何四元數.他們引進了兩種類型的乘法,即數量積和向量積.並把向量代數推廣到變向量的向量微積分.從此,向量的方法被引進到分析和解析幾何中來,並逐步完善,成為了一套優良的數學工具。

3. 誰發明的數列,向量這些東西呢

你應該問誰規定要學數學學這么多
學點初中的就可以了

4. 關於向量的由來

數學中的向量是從復數引入的

5. 向量是為坐標而發明的嗎

要詳細的資料,謝謝!! 向量又稱為矢量,最初被應用於物理學.很多物理解析幾何中的有向線段.最先使用有向線段表示向量的是英國大科學家牛頓.

6. 誰能具體講一講向量的發展史包括為什麼發明向量,發

向量的建立經過了一個漫長的過程,所以不能說具體由哪個人建立起來的.
從數學發展史來看,歷史上很長一段時間,空間的向量結構並未被數學家們所認識,直到19世紀末20世紀初,人們才把空間的性質與向量運算聯系起來,使向量成為具有一套優良運算通性的數學體系。
向量能夠進入數學並得到發展,首先應從復數的幾何表示談起.18世紀末期,挪威測量學家威塞爾首次利用坐標平面上的點來表示復數a+bi,並利用具有幾何意義的復數運算來定義向量的運算.把坐標平面上的點用向量表示出來,並把向量的幾何表示用於研究幾何問題與三角問題.人們逐步接受了復數,也學會了利用復數來表示和研究平面中的向量,向量就這樣平靜地進入了數學。

7. 誰能具體講一講向量的發展史

向量又稱為矢量,最初被應用於物理學.很多物理量如力、速度、位移以及電場強度、磁感應強度等都是向量.大約公元前350年前,古希臘著名學者亞里士多德就知道了力可以表示成向量,兩個力的組合作用可用著名的平行四邊形法則來得到.「向量」一詞來自力學、解析幾何中的有向線段.最先使用有向線段表示向量的是英國大科學家牛頓.
課本上討論的向量是一種帶幾何性質的量,除零向量外,總可以畫出箭頭表示方向.但是在高等數學中還有更廣泛的向量.例如,把所有實系數多項式的全體看成一個多項式空間,這里的多項式都可看成一個向量.在這種情況下,要找出起點和終點甚至畫出箭頭表示方向是辦不到的.這種空間中的向量比幾何中的向量要廣泛得多,可以是任意數學對象或物理對象.這樣,就可以指導線性代數方法應用到廣闊的自然科學領域中去了.因此,向量空間的概念,已成了數學中最基本的概念和線性代數的中心內容,它的理論和方法在自然科學的各領域中得到了廣泛的應用.而向量及其線性運算也為「向量空間」這一抽象的概念提供出了一個具體的模型

8. 向量的概念最早是由誰引入的

向量,最初被應用於物理學.很多物理量如力、速度、位移以及電場強度、磁感應強度等都是向量.大約公元前350年前,古希臘著名學者亞里士多德就知道了力可以表示成向量,兩個力的組合作用可用著名的平行四邊形法則來得到.「向量」一詞來自力學、解析幾何中的有向線段.最先使用有向線段表示向量的是英國大科學家牛頓

9. 向量的歷史

向量(vector)又稱矢量,即既有大小又有方向的量叫做向量。向量是作為力、速度、加速度等量大小而引入 數學的。
希臘的亞里士多德(前384-前322)已經知道力可以表示成向量,兩個力的合成,可以從兩個向量運用平行四 邊形的法則得到。即以此兩力所代表的向量為邊作平行四邊形,其對角線的大小和方向即表示合力的大小與方向( 如下圖)。

德國的斯提文(1548?-1620?)在靜力學問題上,應用了平行四邊形法則。伽利略(1564-1642)清楚地敘述 了這個定律。
稍後丹麥的未塞爾(1745-1818),瑞士的阿工(1768-1822)發現了復數的幾何表示,德國高斯(1777-1855)建立了 復平面的概念,從而向量就與復數建立了一一對應,這不但為虛數的現實化提供了可能,也可以用復數運算來研究 向量。
英國數學家亥維賽(1850-1925)在向量分析上作出了許多貢獻。他首先給出了向量的定義:向量 =a +b +c 。這里 、 、 分別是沿著x、y、z軸方向的單向矢量,系數a、b、c是實數,稱為分量等等。至於n 維向量的理論是由德國數學家格拉斯曼1844年引了的。

閱讀全文

與向量誰發明的相關的資料

熱點內容
馬鞍山二中葉張平 瀏覽:214
機動車交通事故責任糾紛被告代理詞 瀏覽:603
醫院固定資產折舊年限 瀏覽:702
商標注冊網先咨政岳知識產權放心 瀏覽:658
公眾號版權投訴材料 瀏覽:841
簽訂無固定期限合同的好處 瀏覽:727
油汀發明 瀏覽:216
論文轉讓網 瀏覽:282
通州門面轉讓最新消息 瀏覽:165
第二屆紫金知識產權國際峰會 瀏覽:4
2010年4月自考知識產權法答案 瀏覽:259
3系馬年限量版價格 瀏覽:952
快餐店轉讓協議 瀏覽:407
小蘿莉和猴神大叔版權 瀏覽:290
產權年限到期後怎麼辦 瀏覽:83
銅川58同城轉讓 瀏覽:477
著作權使用許可範本 瀏覽:846
第三次工業革命的成果 瀏覽:414
火石創造筆試題 瀏覽:545
河南醫院轉讓 瀏覽:798