導航:首頁 > 創造發明 > 微積分發明者

微積分發明者

發布時間:2021-08-13 08:13:59

A. 微積分主要發明者及各自主要貢獻

牛頓
牛頓在1671年寫了來《流數術自和無窮級數》,這本書直到1736年才出版,它在這本書里指出,變數是由點、線、面的連續運動產生的,否定了以前自己認為的變數是無窮小元素的靜止集合。他把連續變數叫做流動量,把這些流動量的導數叫做流數。牛頓在流數術中所提出的中心問題是:已知連續運動的路徑,求給定時刻的速度(微分法);已知運動的速度求給定時間內經過的路程(積分法)。
萊布尼茨
德國的萊布尼茨(又譯「萊布尼茲」)是一個博才多學的學者,1684年,他發表了現在世界上認為是最早的微積分文獻,這篇文章有一個很長而且很古怪的名字《一種求極大極小和切線的新方法,它也適用於分式和無理量,以及這種新方法的奇妙類型的計算》。就是這樣一篇說理也頗含糊的文章,卻有劃時代的意義。它已含有現代的微分符號和基本微分法則。1686年,萊布尼茨發表了第一篇積分學的文獻。他是歷史上最偉大的符號學者之一,他所創設的微積分符號,遠遠優於牛頓的符號,這對微積分的發展有極大的影響。現今我們使用的微積分通用符號就是當時萊布尼茨精心選用的。

B. 微積分的發明人是誰

1684年,《學術學報》上發表了德國數學家萊布尼茨的一篇文章,宣布他發現一種微分法,即「一種求極大極小和切線的新方法,它也適用於分式和無理量,以及這種新方法的奇妙類型的計算」,1686年,他又發表了類似的文章,討論「潛在的幾何與分析不可分和無限」等。一年以後,物理學家牛頓出版了他的巨著《自然哲學之數學原理》,也談到了他研究的求極大與極小的問題。實際上,他們倆人都發現了微積分的數學原理。於是,就有關創立微積分的優先權問題,發生了一場激烈的爭論。遺憾的是,由於人們不明真相,使30多歲的萊布尼茨長期蒙受冤屈。1699年,瑞士數學家法蒂奧德迪利給皇家學會寫文章,說萊布尼茨的思想獲自牛頓。接著,不少科學家接踵而至,都說萊布尼茨不是發明者。薩維爾天文學教授凱爾,則指控萊布尼茨是剽切者。為此,萊布尼茨參與了爭論,辯白自己的冤枉。但沒有人相信他。1716年11月14日,萊布尼茨含冤逝世,朝廷竟不聞不問,教士們也借口說萊布尼茨是「無信仰者」而不予理睬。

直到萊布尼茨死後,英國皇家學會為牛頓和萊布尼茨發現微積分的優先權問題,專門成立了調查評判委員會。經過長期調查,終於弄清事實,委員會在《通訊》上宣布,牛頓的「流數術」和萊布尼茨的「無窮小演算法」只是名詞不同,實質上是一回事,他倆都是微積分的發明人。

原來事情是這樣的,1676年,牛頓在寫給萊布尼茨的信中,宣布了他的二項式定理,提出了根據流的方程求流數的問題。但在他們交換的信件中,牛頓卻隱瞞了確定極大值和極小值的方法,以及作切線的方法等。而萊布尼茨在給牛頓的回信中寫道,他也發現了一種同樣的方法,並訴說了他的方法。這個方法與牛頓的方法幾乎沒有什麼兩樣。二者的區別是:牛頓主要是在力學研究的基礎上,運用幾何方法研究微積分;而萊布尼茨主要是在研究曲線和切線的面積問題上,運用分析學方法引進微積分概念,得出運演算法則。牛頓是在微積分的應用上更多地結合了運動學,造詣較萊布尼茨高出一籌。但萊布尼茨的表達式採用的數學符號,既簡潔又准確地揭示出微分、積分的實質,遠遠優於牛頓。因此,他們二人發明微積分各有千秋。

萊布尼茨1646年6月21日出生於德國東部的萊比錫城。他的父親是哲學教授,但在他6歲時父親就過早去世了。然而,父親留下的大量藏書卻為萊布尼茨提供了豐富的知識源泉。

萊布尼茨8歲入學,少年時就可以用多種語言表達思想。15歲時考入有名的萊比錫大學,開始對數學發生興趣。1666年,萊布尼茨轉入紐倫堡的何爾道夫大學。這一年他發表了第一篇數學論文《論組合的藝術》,顯示了他的數學才華。這篇論文,正是近代數學的一個分支「數理邏輯」的先聲,他也因此成為數理邏輯的創始人。

大學畢業後,萊布尼茨獲得法學博士學位,投身外交界。1672年3月他作為大使出訪法國巴黎,為期4年。在巴黎工作之餘鑽研數學,結識了荷蘭數學家惠更斯。並利用業余時間攻讀笛卡爾、費爾馬、帕斯卡等人的原著。為他步入數學王國的殿堂打下了堅實的基礎。

1676年,萊布尼茨到漢諾威,在那裡他博覽群書,創立了微積分的基本概念和運算方法,成就了他一生最偉大的發明。

萊布尼茨陸續創立了一些表示微積分的符號:dx表示微分,即拉丁文「differentia」的第一個字母,意為「分細」。∫表示積分,即拉丁文「summa」的第一個字母「s」拉長,意為「求和」。他創立的這些符號,為數學語言的規范化和獨立化起到了極為重要的推動作用。這些符號一直用到今天。

此外,萊布尼茨還提出了使用「函數」一詞,首次引進了「常量」,「變數」和「參變數」,確立了「坐標」、「縱坐標」的名稱。他對變分法的建立及在微分方程、微分幾何、某些特殊曲線(如懸鏈曲線)的研究上都做出了重大貢獻。

C. 微積分是什麼時候誕生的

牛頓在其1665年5月20日的一份手稿中已有微積分的記載,在這份手稿中,牛頓引進了一種帶雙點的字母,它相當於導數的齊次形式。因此,有人將這一日作為微積分的光榮誕生日。事實上,牛頓對微積分的研究以運動學為背景開始於1664年秋,就在這一年,牛頓已經對微積分有了較為清楚的認識。

1665年夏至1667年春,牛頓在家鄉躲避瘟疫期間,對微積分的研究取得了突破性進展。據牛頓自述,1665年11月,他發明正流數術(微分法),次年5月建立反流數術(積分法)。1666年10月,牛頓將前兩年的研究成果整理成一篇總結性論文——《流數簡論》,這也是歷史上第一篇系統的微積分文獻,標志著微積分的誕生。在以後20餘年的時間里,牛頓始終不渝地努力改進、完善自己的微積分學說,先後完成三篇微積分論文:《運用無窮多項方程的分析學》(簡稱《分析學》,1669年)、《流數法與無窮級數》(簡稱《流數法》,1671年)、《曲線求積術》(簡稱《求積術》,1691年)。它們反映了牛頓微積分學說的發展過程。然而牛頓的這些有關微積分的論文並沒有及時公開發表,他的微積分學說的公開表述最早出現在1687年出版的力學名著《自然哲學的數學原理》一書中。因此,《原理》也成為數學史上的劃時代著作。

牛頓對自己的科學著作的發表,態度非常謹慎,他的最成熟的微積分著述《曲線求積術》直到1704年才以《光學》的附錄形式發表,其他的論文發表得更晚,《分析學》在牛頓去世後才公開發表。

微積分產生後,其運算的完整性和應用的廣泛性充分顯示了這一新的數學工具的威力,微積分迅速地成為研究自然科學的有力工具。

D. 微積分是牛頓發明的嗎

微積分不是牛頓發明的,他只是對微積分進行了發展。

從微積分成為一門學科內來說,是在17世紀,但容是積分的思想早在古代就已經產生了。公元前7世紀,古希臘科學家、哲學家泰勒斯就對球的面積、體積、與長度等問題的研究就含有微積分思想。

公元前3世紀,古希臘的數學家、力學家阿基米德(公元前287~前212)的著作《圓的測量》和《論球與圓柱》中就已含有積分學的萌芽,他在研究解決拋物線下的弓形面積、球和球冠面積、螺線下的面積和旋轉雙曲線所得的體積的問題中就隱含著近代積分的思想。

中國古代數學家也產生過積分學的萌芽思想,例如三國時期的劉徽,他對積分學的思想主要有兩點:割圓術及求體積問題的設想。

(4)微積分發明者擴展閱讀:

到了十七世紀,有許多科學問題需要解決,這些問題也就成了促使微積分產生的因素。歸結起來,大約有四種主要類型的問題:

第一類是研究運動的時候直接出現的,也就是求即時速度的問題。

第二類問題是求曲線的切線的問題。

第三類問題是求函數的最大值和最小值問題。

第四類問題是求曲線長、曲線圍成的面積、曲面圍成的體積、物體的重心、一個體積相當大的物體作用於另一物體上的引力。

E. 微積分是誰最先發明的愛因斯坦有哪些成就

微積分是牛頓和萊布尼茨 發明的。 愛因斯坦對天文學最大的貢獻莫過於他的宇宙學理論。他創立了相對論宇宙學,建立了靜態有限無邊的自洽的動力學宇宙模型,並引進了宇宙學原理、彎曲空間等新概念,大大推動了現代天文學的發展。
他在1921年獲得諾貝爾物理學獎,但不是因為相對論這個偉大成就,而是量子理論,因為在他提出相對論的時候,幾乎所有科學家都認為是一種謬論,而後來事實證明相對論是一個偉大的發現,當時間已經過去好幾年了,為了補償,評獎協會就以量子理論的成就頒給了他諾貝爾獎 望採納,謝謝~!

F. 微積分是發明的

牛頓和萊布尼茲分別發明的.

G. 微積分是誰發明的

艾薩克·牛頓、萊布尼茨。

十七世紀下半葉,在前人工作的基礎上,英國大科回學家牛頓和答德國數學家萊布尼茨分別在自己的國度里獨自研究和完成了微積分的創立工作,雖然這只是十分初步的工作。

他們的最大功績是把兩個貌似毫不相關的問題聯系在一起,一個是切線問題(微分學的中心問題),一個是求積問題(積分學的中心問題) 。

牛頓和萊布尼茨建立微積分的出發點是直觀的無窮小量,因此這門學科早期也稱為無窮小分析,這正是現時數學中分析學這一大分支名稱的來源。牛頓研究微積分著重於從運動學來考慮,萊布尼茨卻是側重於幾何學來考慮的。

(7)微積分發明者擴展閱讀:

微積分的應用:

微積分是與應用聯系著發展起來的,最初牛頓應用微積分學及微分方程為了從萬有引力定律導出了開普勒行星運動三定律。

此後,微積分學極大的推動了數學的發展,同時也極大的推動了天文學、力學、物理學、化學、生物學、工程學、經濟學等自然科學、社會科學及應用科學各個分支中的發展。

並在這些學科中有越來越廣泛的應用,特別是計算機的出現更有助於這些應用的不斷發展。微積分作為一門交叉性很強的科目,除了在物理等自然科學上有強實用性外,在經濟學上也有很強的推動作用。

H. 微積分是誰發明的

微積分(Calculus)是高等數學中研究函數的微分(Differentiation)、積分(Integration)以及有關概念和應用的數學分支。它是數學的一個基礎學科。內容主要包括極限、微分學、積分學及其應用。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。
牛頓和萊布尼茨建立微積分的出發點是直觀的無窮小量,因此這門學科早期也稱為無窮小分析,這正是現時數學中分析學這一大分支名稱的來源。牛頓研究微積分著重於從運動學來考慮,萊布尼茨卻是側重於幾何學來考慮的。
牛頓
牛頓在1671年寫了《流數術和無窮級數》,這本書直到1736年才出版,它在這本書里指出,變數是由點、線、面的連續運動產生的,否定了以前自己認為的變數是無窮小元素的靜止集合。他把連續變數叫做流動量,把這些流動量的導數叫做流數。牛頓在流數術中所提出的中心問題是:已知連續運動的路徑,求給定時刻的速度(微分法);已知運動的速度求給定時間內經過的路程(積分法)。
萊布尼茨
德國的萊布尼茨(又譯「萊布尼茲」)是一個博才多學的學者,1684年,他發表了現在世界上認為是最早的微積分文獻,這篇文章有一個很長而且很古怪的名字《一種求極大極小和切線的新方法,它也適用於分式和無理量,以及這種新方法的奇妙類型的計算》。就是這樣一篇說理也頗含糊的文章,卻有劃時代的意義。它已含有現代的微分符號和基本微分法則。1686年,萊布尼茨發表了第一篇積分學的文獻。他是歷史上最偉大的符號學者之一,他所創設的微積分符號,遠遠優於牛頓的符號,這對微積分的發展有極大的影響。現今我們使用的微積分通用符號就是當時萊布尼茨精心選用的。

I. 微積分誰發明的究竟

目前公認為是:英國的牛頓和德國的萊布尼茲各自獨立的發明了微積分。
微積分發明或者稱之為發現的優先權在歷史上曾經有過相當長時間的爭論。英國人說是牛頓發明的。歐洲大陸說是萊布尼茲發明的。實際上是很多人共同努力與不斷積累,例如Fermat,waliss等人做了大量的前期工作,尤其是笛卡爾坐標系的建立。
爭論沒有結果,後人的意見是不管是誰發明的,這個東西本身的確是個好東西,所以誰發明的變得不重要了。因此有了一個折中的說法:
二人各自獨立的發明了微積分。
現在微積分中很多的數學符號是沿用了萊布尼茲當初給出的符號。物理學中導數的符號,即變數上面加園點是沿用牛頓給出的符號。還有導數定義中自變數的增量用 h 表示也是來自於牛頓。
我們現在所見到的微積分是牛頓萊布尼茲之後經過幾百年的時間,非常優秀的數學家不斷的努力之後所呈現出的結果,內容更加豐富,理論體系更加和諧。

J. 微積分的發明者

十七世紀的許多著名的數學家、天文學家、物理學家都為解決幾類問題作了大量的研究工作,如法國的費馬、笛卡爾、羅伯瓦、笛沙格;英國的巴羅、瓦里士;德國的開普勒;義大利的卡瓦列利等人都提出許多很有建樹的理論。為微積分的創立做出了貢獻。
十七世紀下半葉,在前人工作的基礎上,英國大科學家牛頓和德國數學家萊布尼茨分別在自己的國度里獨自研究和完成了微積分的創立工作,雖然這只是十分初步的工作。他們的最大功績是把兩個貌似毫不相關的問題聯系在一起,一個是切線問題(微分學的中心問題),一個是求積問題(積分學的中心問題)。
牛頓和萊布尼茨建立微積分的出發點是直觀的無窮小量,因此這門學科早期也稱為無窮小分析,這正是現在數學中分析學這一大分支名稱的來源。牛頓研究微積分著重於從運動學來考慮,萊布尼茨卻是側重於幾何學來考慮的。
牛頓
牛頓在1671年寫了《流數法和無窮級數》,這本書直到1736年才出版,它在這本書里指出,變數是由點、線、面的連續運動產生的,否定了以前自己認為的變數是無窮小元素的靜止集合。他把連續變數叫做流動量,把這些流動量的導數叫做流數。牛頓在流數術中所提出的中心問題是:已知連續運動的路徑,求給定時刻的速度(微分法);已知運動的速度求給定時間內經過的路程(積分法)。
萊布尼茨
德國的萊布尼茨是一個博才多學的學者,1684年,他發表了現在世界上認為是最早的微積分文獻,這篇文章有一個很長而且很古怪的名字《一種求極大極小和切線的新方法,它也適用於分式和無理量,以及這種新方法的奇妙類型的計算》。就是這樣一篇說理也頗含糊的文章,卻有劃時代的意義。它已含有現代的微分符號和基本微分法則。1686年,萊布尼茨發表了第一篇積分學的文獻。他是歷史上最偉大的符號學者之一,他所創設的微積分符號,遠遠優於牛頓的符號,這對微積分的發展有極大的影響。現在我們使用的微積分通用符號就是當時萊布尼茨精心選用的

閱讀全文

與微積分發明者相關的資料

熱點內容
債務股權轉讓 瀏覽:441
食堂轉讓合同範本 瀏覽:335
廣西華航投資糾紛 瀏覽:902
萌分期投訴 瀏覽:832
金軟pdf期限破解 瀏覽:730
馬鞍山學化妝 瀏覽:41
膠州工商局姜志剛 瀏覽:786
了解到的發明創造的事例 瀏覽:391
2012年中國知識產權發展狀況 瀏覽:773
合肥徽之皇知識產權代理有限公司 瀏覽:636
天津企興知識產權待遇 瀏覽:31
二項基本公共衛生服務項目試題 瀏覽:305
基本公共衛生服務考核標准 瀏覽:543
公共衛生服務考核評估辦法 瀏覽:677
上海工商局咨詢熱線 瀏覽:177
馬鞍山二中葉張平 瀏覽:214
機動車交通事故責任糾紛被告代理詞 瀏覽:603
醫院固定資產折舊年限 瀏覽:702
商標注冊網先咨政岳知識產權放心 瀏覽:658
公眾號版權投訴材料 瀏覽:841