❶ 我們現在數學用的方程,根,解等名詞都是康熙創造出來的嗎有何依據(正史,謝謝!)
康熙教皇子數學、天文學、地理學、醫學、測量學、農學等。先以觀測日食回為例。康熙三十六年答(1697年)閏三月初一日,日食。時康熙帝親征噶爾丹在外,皇太子在北京觀測,使用皇父所賜嵌有三層玻璃的小鏡子,裝於自鳴鍾之上,用望日千里眼觀望。日食似不到十分,日光、房屋、牆壁及人影俱可見,甚屬明耀。觀測奏報自京城發出,送皇父覽閱。康熙帝得到奏報後,硃批曰:「覽爾所奏,果然如此。」後來皇四子胤禛(雍正)回憶道:「昔年遇日食四五分之時,日光照耀,難以仰視。皇考親率朕同諸兄弟在乾清宮,用千里鏡,四周用夾紙遮蔽日光,然後看出考驗所虧分數。此朕身經實驗者。」又以幾何學為例。法國耶穌會士白晉寫給法王路易十四的信中說,康熙帝親自給皇三子胤祉講解幾何學,並培養其科學才能。後又讓胤祉等向義大利耶穌會士德理格學習律呂知識,「命臣德理格在皇三子、皇十五子、皇十六子殿下前,每日講究其精微,修造新書」。康熙帝命在暢春園蒙養齋開館,派允祉主持纂修《律歷淵源》,匯律呂、歷法和演算法於一書。允祉還為《古今圖書集成》的纂輯做出貢獻,成為康熙朝一位傑出的學者。但他在雍正繼位後,仍未逃過劫難:被奪爵,禁景山永安亭而死。
❷ 一元一次方程中的「元」產生於什麼年代是哪位數學家發明的原來的意思是什麼
一元一次方程中的「元」產生的年代沒有明確的記錄,據說是康熙皇帝在學習西方數學時專提出的,因屬當時沒有可以代替「未知數」的代詞,因此採用「元」為方程的未知數。
公元820年左右,數學家花拉子米在《對消與還原》一書中提出了「合並同類項」、「移項」的一元一次方程思想。16世紀,數學家韋達創立符號代數之後,提出了方程的移項與同除命題。1859年,數學家李善蘭正式將這類等式譯為一元一次方程。
(2)數學方程的術語是誰創造擴展閱讀:
一元一次方程可以解決絕大多數的工程問題、行程問題、分配問題、盈虧問題、積分表問題、電話計費問題、數字問題。
如果僅使用算術,部分問題解決起來可能異常復雜,難以理解。而一元一次方程模型的建立,將能從實際問題中尋找等量關系,抽象成一元一次方程可解決的數學問題。
❸ 方程中的元!!!
說法1:古時候常用通假字,而「元」通「源」,解方程其實就是"追本朔源"。說法2:康熙內皇帝拜比利時的容傳教士南懷仁為師,學習數學。他雖然聰穎,但是聽南懷仁講課並不輕松,因為老師的漢語和滿語水平有限,日常會話還能夠勉強對付,而要將嚴謹而高深的科學知識表達清楚往往就力不從心了。南懷仁在講方程時句子冗長,吐音又很不清楚,康熙常常被搞得暈頭轉向。
怎樣才能讓老師講得好懂呢?經過冥思苦想,學生向老師建議,將未知數翻譯為「元」,最高次數翻譯為「次」(限整式方程),使方程左右兩邊相等的未知數的值翻譯為「根」或「解」……
南懷仁用筆認真地記下來,他發現,用這些新創術語換下自己原先使用的繁瑣詞語來表達,果然清晰多了。這使他大為驚異。
康熙創造的這幾個數學術語科學而簡潔,便於理解和記憶,因此一直沿用到今天。 聲明:答案非原創,來源於網路。
❹ 數學用語有哪些
1、平方
平方是一種運算,比如,a的平方表示a×a,簡寫成a²,也可寫成a×a(a的一次方乘a的一次方等專於a的2次方),例如屬4×4=16,8×8=64,平方符號為2。
2、立方
立方也叫三次方。三個相同的數相乘,叫做這個數的立方。如5×5×5叫做5的立方,記做5³。
3、方程
方程(equation)是指含有未知數的等式。是表示兩個數學式(如兩個數、函數、量、運算)之間相等關系的一種等式,使等式成立的未知數的值稱為「解」或「根」。求方程的解的過程稱為「解方程」。
4、解集
解集是一個數學用語,指以一個方程(組)或不等式(組)的所有解為元素的集合叫做該方程(組)或不等式(組)的解集。表示解的集合的方法有三種:列舉法、描述法和圖示法。解集作為數學中的重要工具,在數學中有著十分廣泛的應用。
5、排列
排列,一般地,從n個不同元素中取出m(m≤n)個元素,按照一定的順序排成一列,叫做從n個元素中取出m個元素的一個排列(permutation)。特別地,當m=n時,這個排列被稱作全排列(all permutation)。
❺ 數學術語中△是什麼意思
讀音:得兒塔 計算:△=b^2-4*a*c (a、b、c 分別為方程二次項、一次項和常數項系數) 作用回:在一元二次方程中判定答實根的存在性 舉例:1、X^2+2x+3=0 △=2^2-4*1*3=-8<0 方程無實數根 2、X^2+2x+1=0 △=2^2-4*1*1=0 方程有兩個相等的實數根 3、X^2+2x-1=0 △=2^2-4*1*(-1)=8>0 方程有兩個不相等的實數根
滿意請採納
❻ 高中數學中的三個知識章節:常用邏輯用語、圓錐曲線與方程、導數。它們在高考中分別各佔多少分)
選擇題或者填空每一個5分,侑20分。
圓錐曲線與方程一個大題18分{或者13分}
導數,不知道會不會侑!